Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Produce Firsts with Bursts of Light

26.07.2007
Team generates most energetic terahertz pulses yet, observes useful optical phenomena

Researchers at the U.S. Department of Energy's Brookhaven National Laboratory have generated extremely short pulses of light that are the strongest of their type ever produced and could prove invaluable in probing the ultra-fast motion of atoms and electrons. The scientists also made the first observations of a phenomenon called cross-phase modulation with this high-intensity light - a characteristic that could be used in numerous new light source technologies.

The work, which was done at Brookhaven's Source Development Laboratory, an offshoot of the Lab's National Synchrotron Light Source (NSLS), is described online in the July 23, 2007, edition of Physical Review Letters.

The light pulses used were in the terahertz (THz) range of the broad electromagnetic spectrum, found between the microwave and infrared range. Scientists send tight bunches of electrons at nearly the speed of light through a magnetic field to produce THz radiation at a trillion cycles per second - the terahertz frequency that gives the light its name and that makes them especially valuable for investigating biological molecules and imaging, ranging from tumor detection to homeland security.

The Brookhaven team is looking to expand the potential uses for this type of light by increasing the strength of individual THz pulses, a longtime goal for scientists in the field. By slamming an electron beam from an accelerator into an aluminum mirror, the researchers produced 100 microjoule (100 megawatt) single-cycle pulses - the highest energy ever achieved to date with THz radiation. For comparison, 100 megawatts is about the output of a utility company's electrical generator.

The combination of this newfound strength with ultra-fast pulses provides researchers with a powerful new tool to study the movement of a material's electrons (which zip around at the femtosecond, or quadrillionth of a second, timescale) or atoms (which move at the picosecond, or trillionth of a second, timescale).

"The goal is really to understand the properties of materials," said NSLS researcher Yuzhen Shen, the lead author of the paper. "One might ask what happens in a solid when light, electricity, or sound goes through it, and it's all related to atoms in a crystal wiggling around or the movement of electrons. So the effort surrounding ultra-fast pulses is going into making tools to probe the real fundamental properties of materials on the scales at which they move."

Using this strong light, researchers can "kick" molecular processes such as catalysis or electronic switching (important for developing data storage media) into action and watch their mechanisms on a very short timescale.

The team also found something surprising: the intensity of their THz pulses is so great that they introduce so-called "nonlinear optical effects," specifically, a phenomenon known as cross-phase modulation.

"When you pull on a spring, if you pull twice as hard, it stretches twice as much," said NSLS researcher Larry Carr. "But there's a limit where if you pull twice as hard, the spring doesn't move anymore. That's when it's called nonlinear. The same thing happens in materials. You let these short pulses pass through a material, and they stress it and pull some of the charges apart so they don't act in a linear manner."

As a result, the researchers can manipulate both the ultra-fast THz pulses and the material they interact with. Some of the simplest examples include changing the color of the light or turning the material into a focusing lens.

This is the first time cross-phase modulation has been observed in single-cycle THz pulses. Learning how to control this characteristic could lead to even more light source technologies.

This research was supported by the Office of Basic Energy Sciences within the U.S. Department of Energy's Office of Science, the Office of Naval Research, and Brookhaven's Laboratory Directed R&D funds.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>