Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT physicists get ultra-sharp glimpse of electrons

24.07.2007
MIT physicists have developed a spectroscopy technique that allows researchers to inspect the world of electrons confined to a two-dimensional plane more clearly than ever before.

Two-dimensional electron systems, in which electrons are walled in from above and below but are free to move in a plane as if they were placed on a sheet of paper, are rarely observed in the natural world.

However, they can be created in a laboratory and used, for example, in high-frequency amplifiers found in cell phones.

The new spectroscopy technique measures electron energy levels with 1,000 times greater resolution than previous methods, an advance that has "tremendous power to tell you what the electrons are doing," said MIT physics professor Ray Ashoori, author of a paper on the work published in the July 12 issue of Nature. This technique has already revealed some surprising behavior, and the researchers believe it will shed new light on many physical phenomena involving electrons.

Ashoori and postdoctoral associate Oliver Dial took advantage of a quantum phenomenon known as tunneling to create the most detailed image ever of the spectrum of electron energy levels in a 2D system.

The new spectroscopy technique relies on a phenomenon that defies the laws of classical mechanics. Electrons, because they exhibit wavelike behavior, can move between two locations separated by a barrier without having to pass over the barrier-a phenomenon known as "quantum tunneling."

"We anticipate that this technique will help us discover all kinds of new physics," said Ashoori. "We're looking into a realm that was just not visible to us before."

Electrons trapped in 2D systems exist in specific energy levels, just as electrons orbiting an atom's nucleus in three dimensions exist in distinct quantum energy levels. By measuring which energy levels are occupied, physicists can study how electrons behave together in large groups.

The researchers used short pulses of electricity to induce electrons to tunnel from a 2D system to a 3D system, and vice versa. By measuring the resulting voltage difference, they could calculate the energy states of the electrons in the 2D system.

The spectroscopy experiments were performed inside a semiconducting crystal cooled to 0.1 degrees above absolute zero.

Until now, the primary method for performing this kind of spectroscopy relied on photoemission. The new method has an energy resolution that is 1,000 times finer than the best photoemission measurements.

Physicists have also traditionally used "transport" techniques that measure electrical currents flowing in response to applied voltages to learn about 2D electron energy levels, but that technique only offers a partial look at what electrons are doing.

"Similar to creating small ripples on the surface of a sea, transport techniques only tell us about what is happening very close to the water's surface," said Dial. "Pictures made with this high-resolution spectroscopy provide, in essence, one of the first glimpses of the entire ocean in these systems and show what a beautiful and interesting world exists beneath the surface."

The research was conducted in collaboration with crystal growers at Alcatel-Lucent Bell Laboratories in Murray Hill, N.J., and funded by the Office of Naval Research and the National Science Foundation.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>