Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT physicists get ultra-sharp glimpse of electrons

24.07.2007
MIT physicists have developed a spectroscopy technique that allows researchers to inspect the world of electrons confined to a two-dimensional plane more clearly than ever before.

Two-dimensional electron systems, in which electrons are walled in from above and below but are free to move in a plane as if they were placed on a sheet of paper, are rarely observed in the natural world.

However, they can be created in a laboratory and used, for example, in high-frequency amplifiers found in cell phones.

The new spectroscopy technique measures electron energy levels with 1,000 times greater resolution than previous methods, an advance that has "tremendous power to tell you what the electrons are doing," said MIT physics professor Ray Ashoori, author of a paper on the work published in the July 12 issue of Nature. This technique has already revealed some surprising behavior, and the researchers believe it will shed new light on many physical phenomena involving electrons.

Ashoori and postdoctoral associate Oliver Dial took advantage of a quantum phenomenon known as tunneling to create the most detailed image ever of the spectrum of electron energy levels in a 2D system.

The new spectroscopy technique relies on a phenomenon that defies the laws of classical mechanics. Electrons, because they exhibit wavelike behavior, can move between two locations separated by a barrier without having to pass over the barrier-a phenomenon known as "quantum tunneling."

"We anticipate that this technique will help us discover all kinds of new physics," said Ashoori. "We're looking into a realm that was just not visible to us before."

Electrons trapped in 2D systems exist in specific energy levels, just as electrons orbiting an atom's nucleus in three dimensions exist in distinct quantum energy levels. By measuring which energy levels are occupied, physicists can study how electrons behave together in large groups.

The researchers used short pulses of electricity to induce electrons to tunnel from a 2D system to a 3D system, and vice versa. By measuring the resulting voltage difference, they could calculate the energy states of the electrons in the 2D system.

The spectroscopy experiments were performed inside a semiconducting crystal cooled to 0.1 degrees above absolute zero.

Until now, the primary method for performing this kind of spectroscopy relied on photoemission. The new method has an energy resolution that is 1,000 times finer than the best photoemission measurements.

Physicists have also traditionally used "transport" techniques that measure electrical currents flowing in response to applied voltages to learn about 2D electron energy levels, but that technique only offers a partial look at what electrons are doing.

"Similar to creating small ripples on the surface of a sea, transport techniques only tell us about what is happening very close to the water's surface," said Dial. "Pictures made with this high-resolution spectroscopy provide, in essence, one of the first glimpses of the entire ocean in these systems and show what a beautiful and interesting world exists beneath the surface."

The research was conducted in collaboration with crystal growers at Alcatel-Lucent Bell Laboratories in Murray Hill, N.J., and funded by the Office of Naval Research and the National Science Foundation.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>