Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New light cast on key chemical reactions in interstellar space

13.07.2007
A detailed understanding of key chemical reactions that take place in interstellar space has been provided by groundbreaking research at two U.S. Department of Energy national laboratories and two European universities.

Argonne National Laboratory senior chemist Stephen Klippenstein – along with colleagues at Sandia National Laboratories; the Institute of Physics, University of Rennes, France; and the University of Cambridge, U.K. – has developed a detailed understanding of the dynamics of reactions between neutral radicals and neutral molecules, known as “neutral-neutral” reactions, at temperatures as low as 20 Kelvin, approximately the temperature of interstellar space.

In their work, Klippenstein and his collaborators determined why certain molecules reacted rapidly even at low temperatures by carefully comparing theory and experiment for a sample class of reactions (O3P + alkenes) that spans the range from non-reactive to highly reactive. The observed results from the experiment closely correlated with theoretical predictions, said Klippenstein.

“It was remarkable," he said, "just how well theory and experiment agreed throughout the whole spectrum from 20 Kelvin to room temperature. This means that we can rely on theory to predict which reactions will happen quickly.”

Establishing a working model for interstellar chemistry is especially important given the difficulty of performing large-scale experiments, according to Klippenstein.

“My collaborators have developed some great experimental techniques for measuring these reactions at low temperatures," he said. "But such experiments are still very time-consuming and are also hard to apply to many reactions. So schemes for predicting the reactivity for arbitrary reactions, either a priori or from extrapolation of measurements at higher temperatures, are of great utility to modelers of interstellar chemistry.”

Prior experimental studies with the CRESU (Reaction Kinetics in Uniform Supersonic Flow) technique demonstrated that a “surprising number” of neutral-neutral reactions remain rapid at very low temperatures. As a result, such reactions can play an important role in the chemistry of interstellar space, in contrast with the conventional wisdom that interstellar chemistry is essentially all ion-based.

The paper, entitled “Understanding Reactivity at Very Low Temperatures: The Reactions of Oxygen Atoms with Alkenes,” appears in the July 6 issue of Science.

This research was supported by the Division of Chemical Sciences, Geosciences and Biosciences within the Office of Basic Energy Sciences of the U.S. Department of Energy.

With employees from more than 60 nations, Argonne National Laboratory brings the world's brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please contact Sylvia Carson (630/252-5510 or scarson@anl.gov) at Argonne.

Sylvia Carson | EurekAlert!
Further information:
http://www.anl.gov

More articles from Physics and Astronomy:

nachricht Long-lived storage of a photonic qubit for worldwide teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Telescopes team up to study giant galaxy
12.12.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>