Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New light cast on key chemical reactions in interstellar space

13.07.2007
A detailed understanding of key chemical reactions that take place in interstellar space has been provided by groundbreaking research at two U.S. Department of Energy national laboratories and two European universities.

Argonne National Laboratory senior chemist Stephen Klippenstein – along with colleagues at Sandia National Laboratories; the Institute of Physics, University of Rennes, France; and the University of Cambridge, U.K. – has developed a detailed understanding of the dynamics of reactions between neutral radicals and neutral molecules, known as “neutral-neutral” reactions, at temperatures as low as 20 Kelvin, approximately the temperature of interstellar space.

In their work, Klippenstein and his collaborators determined why certain molecules reacted rapidly even at low temperatures by carefully comparing theory and experiment for a sample class of reactions (O3P + alkenes) that spans the range from non-reactive to highly reactive. The observed results from the experiment closely correlated with theoretical predictions, said Klippenstein.

“It was remarkable," he said, "just how well theory and experiment agreed throughout the whole spectrum from 20 Kelvin to room temperature. This means that we can rely on theory to predict which reactions will happen quickly.”

Establishing a working model for interstellar chemistry is especially important given the difficulty of performing large-scale experiments, according to Klippenstein.

“My collaborators have developed some great experimental techniques for measuring these reactions at low temperatures," he said. "But such experiments are still very time-consuming and are also hard to apply to many reactions. So schemes for predicting the reactivity for arbitrary reactions, either a priori or from extrapolation of measurements at higher temperatures, are of great utility to modelers of interstellar chemistry.”

Prior experimental studies with the CRESU (Reaction Kinetics in Uniform Supersonic Flow) technique demonstrated that a “surprising number” of neutral-neutral reactions remain rapid at very low temperatures. As a result, such reactions can play an important role in the chemistry of interstellar space, in contrast with the conventional wisdom that interstellar chemistry is essentially all ion-based.

The paper, entitled “Understanding Reactivity at Very Low Temperatures: The Reactions of Oxygen Atoms with Alkenes,” appears in the July 6 issue of Science.

This research was supported by the Division of Chemical Sciences, Geosciences and Biosciences within the Office of Basic Energy Sciences of the U.S. Department of Energy.

With employees from more than 60 nations, Argonne National Laboratory brings the world's brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please contact Sylvia Carson (630/252-5510 or scarson@anl.gov) at Argonne.

Sylvia Carson | EurekAlert!
Further information:
http://www.anl.gov

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>