Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New light cast on key chemical reactions in interstellar space

13.07.2007
A detailed understanding of key chemical reactions that take place in interstellar space has been provided by groundbreaking research at two U.S. Department of Energy national laboratories and two European universities.

Argonne National Laboratory senior chemist Stephen Klippenstein – along with colleagues at Sandia National Laboratories; the Institute of Physics, University of Rennes, France; and the University of Cambridge, U.K. – has developed a detailed understanding of the dynamics of reactions between neutral radicals and neutral molecules, known as “neutral-neutral” reactions, at temperatures as low as 20 Kelvin, approximately the temperature of interstellar space.

In their work, Klippenstein and his collaborators determined why certain molecules reacted rapidly even at low temperatures by carefully comparing theory and experiment for a sample class of reactions (O3P + alkenes) that spans the range from non-reactive to highly reactive. The observed results from the experiment closely correlated with theoretical predictions, said Klippenstein.

“It was remarkable," he said, "just how well theory and experiment agreed throughout the whole spectrum from 20 Kelvin to room temperature. This means that we can rely on theory to predict which reactions will happen quickly.”

Establishing a working model for interstellar chemistry is especially important given the difficulty of performing large-scale experiments, according to Klippenstein.

“My collaborators have developed some great experimental techniques for measuring these reactions at low temperatures," he said. "But such experiments are still very time-consuming and are also hard to apply to many reactions. So schemes for predicting the reactivity for arbitrary reactions, either a priori or from extrapolation of measurements at higher temperatures, are of great utility to modelers of interstellar chemistry.”

Prior experimental studies with the CRESU (Reaction Kinetics in Uniform Supersonic Flow) technique demonstrated that a “surprising number” of neutral-neutral reactions remain rapid at very low temperatures. As a result, such reactions can play an important role in the chemistry of interstellar space, in contrast with the conventional wisdom that interstellar chemistry is essentially all ion-based.

The paper, entitled “Understanding Reactivity at Very Low Temperatures: The Reactions of Oxygen Atoms with Alkenes,” appears in the July 6 issue of Science.

This research was supported by the Division of Chemical Sciences, Geosciences and Biosciences within the Office of Basic Energy Sciences of the U.S. Department of Energy.

With employees from more than 60 nations, Argonne National Laboratory brings the world's brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please contact Sylvia Carson (630/252-5510 or scarson@anl.gov) at Argonne.

Sylvia Carson | EurekAlert!
Further information:
http://www.anl.gov

More articles from Physics and Astronomy:

nachricht NASA Protects its super heroes from space weather
17.08.2017 | NASA/Johnson Space Center

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Climate change: In their old age, trees still accumulate large quantities of carbon

17.08.2017 | Earth Sciences

Modern genetic sequencing tools give clearer picture of how corals are related

17.08.2017 | Life Sciences

Superconductivity research reveals potential new state of matter

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>