Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoscience in Austria leads the way

18.06.2007
Nickel-rhodium nanowires exhibit surprisingly high reactivity towards oxygen. As a result, they offer future development potential for new types of chemical catalysts. These findings were the result of research by an Austrian and Swedish research group who succeeded in growing one-dimensional nickel stripes on a rhodium substrate in a controlled manner. The team is part of the national research network "Nanoscience on Surfaces", which has been supported by the FWF Austrian Science Fund since December 2003.

Atoms on the surfaces and borderlines of matter behave differently to atoms inside its volume due to their position at the boundary. Significantly altering the surface area to volume ratio can have a major impact on the chemical and physical properties of a material - even if its chemical composition remains unchanged. Research into surface effects is particularly important in nanotechnology because nanoscale structures are - in extreme cases - one-dimensional and therefore almost purely surfaces. Prof. Falko Netzer from the Institute of Physics at Karl-Franzens University in Graz, Austria, is responsible for coordinating work in this field within the national research network "Nanoscience on Surfaces".

THE RESEARCH DIMENSION

Prof. Netzer and his team recently succeeded in establishing a model that can be used to study the reactivity of metallic nanosystems at an atomic level. Prof. Netzer explains: "We succeeded in using physical vapour deposition to form quasi one-dimensional rows of nickel atoms on a special rhodium substrate. This single crystal rhodium substrate has a precise step structure, whereby steps that are only one rhodium atom high are interspersed with terraces that are several atoms wide." The team was able to create a bimetallic system with precisely defined nanoscale dimensions by accurately depositing nickel atoms at the step edges.

Prof. Netzer's group then analysed the chemical reactivity of this system via scanning tunnelling microscopy, complex calculations and x-ray photoelectron spectroscopy using synchrotron radiation at Lund University in Sweden. These analyses produced interesting results which demonstrated that the nickel rows exhibited unusually high reactivity towards oxygen. This enhanced reactivity is caused primarily by shifts in specific electronic states of rhodium atoms in the step structure. This shift then transfers to the directly adjacent nickel atoms and facilitates their reaction with oxygen.

REACTIVE

Prof. Netzer explains the potential of this enhanced reactivity with oxygen: "Our measurements and calculations provide clear evidence that one-dimensional nickel rows can fully react with oxygen at a specific gas pressure - without even one rhodium atom reacting with oxygen. As a result, this system offers opportunities to develop new catalysts, involving the adsorption and dissociation of oxygen atoms."

Prof. Netzer believes that these results underline once more the key role that fundamental research into nanomaterials plays with regard to their future application in day-to-day processes. It was the importance of fundamental research such as this that motivated Prof. Netzer and a number of his Austrian colleagues to establish the research network "Nanoscience on Surfaces" in 2003, and the network has received support from the FWF Austrian Science Fund ever since. The network includes groups specialising in surface technology from the Karl-Franzens University in Graz and the universities of Vienna, Linz, Innsbruck as well as from the Technical Universities of Graz and Vienna. This diverse network facilitates interdisciplinary cooperation comprising a range of methods from physics, chemistry and material science with the aim of creating and characterising defined nanostructures on surfaces. Indeed, scientists and engineers will only be able to use this technology reliably and efficiently when chemical and physical procedures are understood and mastered at the nanoscale level.

Till C. Jelitto | alfa
Further information:
http://www.prd.at
http://www.fwf.ac.at/en/public_relations/press/pv200706-en.html

More articles from Physics and Astronomy:

nachricht NASA's SDO sees partial eclipse in space
29.05.2017 | NASA/Goddard Space Flight Center

nachricht Strathclyde-led research develops world's highest gain high-power laser amplifier
29.05.2017 | University of Strathclyde

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>