Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoscience in Austria leads the way

18.06.2007
Nickel-rhodium nanowires exhibit surprisingly high reactivity towards oxygen. As a result, they offer future development potential for new types of chemical catalysts. These findings were the result of research by an Austrian and Swedish research group who succeeded in growing one-dimensional nickel stripes on a rhodium substrate in a controlled manner. The team is part of the national research network "Nanoscience on Surfaces", which has been supported by the FWF Austrian Science Fund since December 2003.

Atoms on the surfaces and borderlines of matter behave differently to atoms inside its volume due to their position at the boundary. Significantly altering the surface area to volume ratio can have a major impact on the chemical and physical properties of a material - even if its chemical composition remains unchanged. Research into surface effects is particularly important in nanotechnology because nanoscale structures are - in extreme cases - one-dimensional and therefore almost purely surfaces. Prof. Falko Netzer from the Institute of Physics at Karl-Franzens University in Graz, Austria, is responsible for coordinating work in this field within the national research network "Nanoscience on Surfaces".

THE RESEARCH DIMENSION

Prof. Netzer and his team recently succeeded in establishing a model that can be used to study the reactivity of metallic nanosystems at an atomic level. Prof. Netzer explains: "We succeeded in using physical vapour deposition to form quasi one-dimensional rows of nickel atoms on a special rhodium substrate. This single crystal rhodium substrate has a precise step structure, whereby steps that are only one rhodium atom high are interspersed with terraces that are several atoms wide." The team was able to create a bimetallic system with precisely defined nanoscale dimensions by accurately depositing nickel atoms at the step edges.

Prof. Netzer's group then analysed the chemical reactivity of this system via scanning tunnelling microscopy, complex calculations and x-ray photoelectron spectroscopy using synchrotron radiation at Lund University in Sweden. These analyses produced interesting results which demonstrated that the nickel rows exhibited unusually high reactivity towards oxygen. This enhanced reactivity is caused primarily by shifts in specific electronic states of rhodium atoms in the step structure. This shift then transfers to the directly adjacent nickel atoms and facilitates their reaction with oxygen.

REACTIVE

Prof. Netzer explains the potential of this enhanced reactivity with oxygen: "Our measurements and calculations provide clear evidence that one-dimensional nickel rows can fully react with oxygen at a specific gas pressure - without even one rhodium atom reacting with oxygen. As a result, this system offers opportunities to develop new catalysts, involving the adsorption and dissociation of oxygen atoms."

Prof. Netzer believes that these results underline once more the key role that fundamental research into nanomaterials plays with regard to their future application in day-to-day processes. It was the importance of fundamental research such as this that motivated Prof. Netzer and a number of his Austrian colleagues to establish the research network "Nanoscience on Surfaces" in 2003, and the network has received support from the FWF Austrian Science Fund ever since. The network includes groups specialising in surface technology from the Karl-Franzens University in Graz and the universities of Vienna, Linz, Innsbruck as well as from the Technical Universities of Graz and Vienna. This diverse network facilitates interdisciplinary cooperation comprising a range of methods from physics, chemistry and material science with the aim of creating and characterising defined nanostructures on surfaces. Indeed, scientists and engineers will only be able to use this technology reliably and efficiently when chemical and physical procedures are understood and mastered at the nanoscale level.

Till C. Jelitto | alfa
Further information:
http://www.prd.at
http://www.fwf.ac.at/en/public_relations/press/pv200706-en.html

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>