Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chronicle of a Death Foretold

01.06.2007
Two of the World's Largest Interferometric Facilities Team-up to Study a Red Giant Star

Using ESO's VLTI on Cerro Paranal and the VLBA facility operated by NRAO, an international team of astronomers has made what is arguably the most detailed study of the environment of a pulsating red giant star. They performed, for the first time, a series of coordinated observations of three separate layers within the star's tenuous outer envelope: the molecular shell, the dust shell, and the maser shell, leading to significant progress in our understanding of the mechanism of how, before dying, evolved stars lose mass and return it to the interstellar medium.

S Orionis (S Ori) belongs to the class of Mira-type variable stars. It is a solar-mass star that, as will be the fate of our Sun in 5 billion years, is nearing its gloomy end as a white dwarf. Mira stars are very large and lose huge amounts of matter. Every year, S Ori ejects as much as the equivalent of Earth's mass into the cosmos.

"Because we are all stardust, studying the phases in the life of a star when processed matter is sent back to the interstellar medium to be used for the next generation of stars, planets... and humans, is very important," said Markus Wittkowski, lead author of the paper reporting the results. A star such as the Sun will lose between a third and half of its mass during the Mira phase.

S Ori pulsates with a period of 420 days. In the course of its cycle, it changes its brightness by a factor of the order of 500, while its diameter varies by about 20%.

Although such stars are enormous - they are typically larger than the current Sun by a factor of a few hundred, i.e. they encompass the orbit of the Earth around the Sun - they are also distant and to peer into their deep envelopes requires very high resolution. This can only be achieved with interferometric techniques.

"Astronomers are like medical doctors, who use various instruments to examine different parts of the human body," said co-author David Boboltz. "While the mouth can be checked with a simple light, a stethoscope is required to listen to the heart beat. Similarly the heart of the star can be observed in the optical, the molecular and dust layers can be studied in the infrared and the maser emission can be probed with radio instruments. Only the combination of the three gives us a more complete picture of the star and its envelope."

The maser emission comes from silicon monoxide (SiO) molecules and can be used to image and track the motion of gas clouds in the stellar envelope roughly 10 times the size of the Sun.

The astronomers observed S Ori with two of the largest interferometric facilities available: the ESO Very Large Telescope Interferometer (VLTI) at Paranal, observing in the near- and mid-infrared, and the NRAO-operated Very Long Baseline Array (VLBA), that takes measurements in the radio wave domain.

Because the star's luminosity changes periodically, the astronomers observed it simultaneously with both instruments, at several different epochs. The first epoch occurred close to the stellar minimum luminosity and the last just after the maximum on the next cycle.

The astronomers found the star's diameter to vary between 7.9 milliarcseconds and 9.7 milliarcseconds. At the distance of S Ori, this corresponds to a change of the radius from about 1.9 to 2.3 times the distance between the Earth and the Sun, or between 400 and 500 solar radii!

As if such sizes were not enough, the inner dust shell is found to be about twice as big. The maser spots, which also form at about twice the radius of the star, show the typical structure of partial to full rings with a clumpy distribution. Their velocities indicate that the gas is expanding radially, moving away at a speed of about 10 km/s.

The multi-wavelength analysis indicates that near the minimum there is more dust production and mass ejection: in these phases indeed the amount of dust is significantly higher than in the others. After this intense matter production and ejection the star continues its pulsation and when it reaches the maximum luminosity, it displays a much more expanded dust shell. This clearly supports a strong connection between the Mira pulsation and the dust production and expulsion.

Furthermore, the astronomers found that grains of aluminum oxide - also called corundum - constitute most of S Ori's dust shell: the grain size is estimated to be of the order of 10 millionths of a centimetre, that is one thousand times smaller than the diameter of a human hair.

"We know one chapter of the secret life of a Mira star, but much more can be learned in the near future, when we add near-infrared interferometry with the AMBER instrument on the VLTI to our (already broad) observational approach," said Wittkowski.

Henri Boffin | alfa
Further information:
http://www.eso.org/public/outreach/press-rel/pr-2007/pr-25-07.html

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>