Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cassini 'CAT Scan' maps clumps in Saturn's rings

23.05.2007
Results may help explain origin of rings

Saturn's largest and most densely packed ring is composed of dense clumps of particles separated by nearly empty gaps, according to new findings from NASA's Cassini spacecraft.

These clumps in Saturn's B ring are neatly organized and constantly colliding, which surprised scientists.

Previous interpretations assumed the ring particles were distributed uniformly and so scientists underestimated the total mass of Saturn's rings. The mass may actually be two or more times previous estimates.

"These results will help us understand the overall question of the age and hence the origin of Saturn's rings," said Josh Colwell, assistant professor of physics at the University of Central Florida and a member of the Cassini ultraviolet imaging spectrograph team publishing its results in the journal Icarus this month.

Principal investigator Larry Esposito at the University of Colorado, Boulder is fascinated with the findings.

"The rings are different from the picture we had in our minds," Esposito said. "We originally thought we would see a uniform cloud of particles. Instead we find that the particles are clumped together with empty spaces in between. If you were flying under Saturn's rings in an airplane, you would see these flashes of sunlight come through the gaps, followed by dark and so forth. This is different from flying under a uniform cloud of particles."

The observations were made using the spectrograph aboard the Cassini spacecraft, which left earth in 1997 on a mission to collect detailed data about Saturn, its rings and moons. Cassini -- the largest interplanetary spacecraft launched from earth -- entered Saturn's orbit in July 2004, and scientists have been using sophisticated equipment on board to view and analyze images.

Boulder and UCF scientists observed the brightness of a star as the rings passed in front of the star on multiple occasions. This provides a measurement of the amount of ring material between the spacecraft and the star.

"Combining many of these occultations at different viewing geometries is like doing a CAT scan of the rings," said Colwell. "By studying the brightness of stars as the rings pass in front of them, we are able to map the ring structure in 3-D and learn more about the shape, spacing and orientation of clusters of particles."

The observations confirm that the gravitational attraction of ring particles to each other creates clumps, or "self-gravity wakes." If the clumps were farther from Saturn, they might continue to grow into a moon. But because these clumps are so close to Saturn, their different speeds around Saturn counteract this gravitational attraction so that the clumps get stretched like taffy and pulled apart. The clumps are constantly forming and coming apart once they get to be about 30 to 50 meters (about 100 to 150 feet) across.

"At any given time, most particles are going to be in one of the clumps, but the particles keep moving from clump to clump as clumps are destroyed and new ones are formed," added Colwell.

Colwell is a professor in UCF's growing program in planetary sciences. He joined the faculty because of the "opportunity to be involved in growing a new planetary sciences program."

Zenaida Gonzalez Kotala | EurekAlert!
Further information:
http://www.nasa.gov/cassini
http://saturn.jpl.nasa.gov
http://lasp.colorado.edu/cassini

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>