Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cassini 'CAT Scan' maps clumps in Saturn's rings

23.05.2007
Results may help explain origin of rings

Saturn's largest and most densely packed ring is composed of dense clumps of particles separated by nearly empty gaps, according to new findings from NASA's Cassini spacecraft.

These clumps in Saturn's B ring are neatly organized and constantly colliding, which surprised scientists.

Previous interpretations assumed the ring particles were distributed uniformly and so scientists underestimated the total mass of Saturn's rings. The mass may actually be two or more times previous estimates.

"These results will help us understand the overall question of the age and hence the origin of Saturn's rings," said Josh Colwell, assistant professor of physics at the University of Central Florida and a member of the Cassini ultraviolet imaging spectrograph team publishing its results in the journal Icarus this month.

Principal investigator Larry Esposito at the University of Colorado, Boulder is fascinated with the findings.

"The rings are different from the picture we had in our minds," Esposito said. "We originally thought we would see a uniform cloud of particles. Instead we find that the particles are clumped together with empty spaces in between. If you were flying under Saturn's rings in an airplane, you would see these flashes of sunlight come through the gaps, followed by dark and so forth. This is different from flying under a uniform cloud of particles."

The observations were made using the spectrograph aboard the Cassini spacecraft, which left earth in 1997 on a mission to collect detailed data about Saturn, its rings and moons. Cassini -- the largest interplanetary spacecraft launched from earth -- entered Saturn's orbit in July 2004, and scientists have been using sophisticated equipment on board to view and analyze images.

Boulder and UCF scientists observed the brightness of a star as the rings passed in front of the star on multiple occasions. This provides a measurement of the amount of ring material between the spacecraft and the star.

"Combining many of these occultations at different viewing geometries is like doing a CAT scan of the rings," said Colwell. "By studying the brightness of stars as the rings pass in front of them, we are able to map the ring structure in 3-D and learn more about the shape, spacing and orientation of clusters of particles."

The observations confirm that the gravitational attraction of ring particles to each other creates clumps, or "self-gravity wakes." If the clumps were farther from Saturn, they might continue to grow into a moon. But because these clumps are so close to Saturn, their different speeds around Saturn counteract this gravitational attraction so that the clumps get stretched like taffy and pulled apart. The clumps are constantly forming and coming apart once they get to be about 30 to 50 meters (about 100 to 150 feet) across.

"At any given time, most particles are going to be in one of the clumps, but the particles keep moving from clump to clump as clumps are destroyed and new ones are formed," added Colwell.

Colwell is a professor in UCF's growing program in planetary sciences. He joined the faculty because of the "opportunity to be involved in growing a new planetary sciences program."

Zenaida Gonzalez Kotala | EurekAlert!
Further information:
http://www.nasa.gov/cassini
http://saturn.jpl.nasa.gov
http://lasp.colorado.edu/cassini

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>