Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is the Vacuum Empty? – the Higgs Field and the Dark Energy

11.05.2007
The problems in understanding the true nature of the “vacuum” of space were discussed by theoretical physicist Alvaro de Rújula from CERN (the European Council for Nuclear Research) in Geneva, Switzerland, and a professor of physics at Boston University at the EPL symposium, “Physics In Our Times” held today (10 May) at the Fondation Del Duca de l’Institut de France, Paris.

“As it turns out, the vacuum is not empty - there is a difference between the vacuum and nothingness,” he stated. “Surprisingly, of all known ‘substances’, the vacuum is the least well understood.”

From the point of view of cosmology, the vacuum appears to have an energy density, which is sometimes called “dark energy” or the “cosmological constant”, responsible for the observed accelerated expansion of the universe. From a particle physics viewpoint, the vacuum is permeated by a “Higgs Field” - named after physicist Peter Higgs. In the Standard Model of particle physics (which has mapped the subatomic world with remarkable success for over 30 years), the masses of all particles are generated as a result of their interactions with this field.

It should also be possible to detect excitations of the Higgs field in the form of a particle known as the “Higgs boson”. Detecting the Higgs - the only particle in the Standard Model that has not been observed experimentally - is therefore one of the outstanding challenges in particle physics today. Scientists hope to detect the Higgs using CERN’s Large Hadron Collider (LHC), due to come online in November this year. The LHC will be the world’s largest particle accelerator, colliding protons on protons at a total energy of 16 TeV (16x1012 eV) to generate what physicists hope will be a slew of new particles, including the Higgs.

The LHC will also search for many hypothetical particles other than the Higgs boson in what is called “physics beyond the Standard Model”, with “supersymmetry” being a promising candidate idea. Supersymmetric extensions of the Standard Model predict that all fundamental particles - such as quarks, photons and electrons - have ‘cousins’: their so-called `superpartners’, yet to be discovered.

Dr. de Rújula’s favourite achievement to date, in collaboration with Sheldon Glashow and Howard Georgi, has been understanding the masses of particles made of quarks. “My colleagues Arnon Dar and Shlomo Dado and I also believe we have recently solved the two main problems of high-energy astrophysics, gamma ray bursts and cosmic rays, but astrophysicists do not (yet) agree with this,” explained Dr. de Rújula.

Looking to the future, Dr. de Rújula believes that the LHC will teach us “something fundamental”. Apart from finding the Higgs, it is possible that the collider will produce the “dark matter” particles indirectly observed in the universe. “However, even if the LHC finds nothing this would also be very interesting because it would tell us that we haven’t understood anything about the vacuum. A complete lack of understanding often precedes a scientific revolution” he said.

Dianne Stilwell | alfa
Further information:
http://www.iop.org/EJ/journal/EPL

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>