Scientists Step Closer to Realising Invisible Technology

Scientists have already created an ‘invisibility cloak’ made out of ‘metamaterial’ which can bend electromagnetic radiation – such as visible light, radar or microwaves – around a spherical space, making an object within this region appear invisible.

Until now, scientists could only make objects appear invisible from far away. Liverpool mathematician Dr Sébastien Guenneau, together with Dr Frédéric Zolla and Professors André Nicolet from the University of Marseille, have proven – using a specially designed computer model called GETDP – that objects can also be made to appear invisible from close range when light travels in waves rather than beams.

Scientists predict that metamaterials could be of use in military technology, such as in the construction of fighter jets and submarines, but it will be some years before invisibility cloaks can be developed for human beings.

Dr Guenneau, at the University’s Department of Mathematical Science, explains:
“The shape and structure of aeroplanes make them ideal objects for cloaking, as they have a fixed structure and movement pattern. Human beings and animals are more difficult as their movement is very flexible, so the cloak – as it is designed at the moment – would easily be seen when the person or animal made any sudden movement.

“A cloak, such as the one worn by the Harry Potter character for example, is not yet possible but it is a good example of what we are trying to move towards. Using this new computer model we can prove that light can bend around an object under a cloak and is not diffracted by the object. This happens because the metamaterial that makes up the cloak stretches the metrics of space, in a similar way to what heavy planets and stars do for the metrics of space-time in Einstein’s general relativity theory.

“In order for the cloaking device to work in the first place light has to separate into two or more waves resulting in a new wave pattern. Within this pattern we get light and dark regions which are needed in order for an object to appear invisible.

“Until now, however, it was not clear whether photons – particles that make up all forms of light – can split and form new waves when the light source is close to the object. If we use ray optic techniques – where light travels in beams – photons break down at close range and the object does not appear invisible. If we study light as it travels in waves however, invisibility is maintained.”

Scientists predict that invisibility will be possible for objects of any shape and size within the next decade.

The research findings are published in Optic Letters.

Media Contact

Samantha Martin alfa

More Information:

http://www.liv.ac.uk/newsroom

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors