Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fleet of Zeplins steps up search for dark matter particles

18.04.2007
The race for the first direct detection of dark matter will move into a new phase in the coming months as the ZEPLIN-II instrument is joined by ZEPLIN-III, the world’s most sensitive dark matter detector.

Dr Alexander Murphy, who is presenting the first results from the ZEPLIN-II detector at the RAS National Astronomy Meeting in Preston on 18th April said, “ZEPLIN-II is beginning its second search for dark matter particles, deep underground in a salt and potash mine in North Yorkshire, and we have been pouring through the first data looking for possible interactions with dark matter. Now, just last week, we’ve had the go-ahead to start operating our next generation detector, ZEPLIN-III. We will be tweaking both detectors to improve their sensitivity all the time and, over the next few months, we’ll be able to see signals that are many times fainter. This will give us a fantastic chance of making the first direct detection of a dark matter particle.”

The ZEPLIN-II instrument holds 31 kg of liquid xenon, cooled to a temperature of -110o Celsius. Theory suggests that, from time to time, a dark matter particle will scatter from the xenon leaving a very small signal behind. Extremely sensitive light detectors view the xenon looking for such a telltale sign. ZEPLIN-II, has proved the world’s most sensitive detector of this type (noble liquid technology) and is surpassed only by the Cryogenic Dark Matter Search (CDMS), based in Minnesota, which uses a semiconductor technology. With a few tweaks, the team expects ZEPLIN-II to be able to match the sensitivity of CDMS within a few months.

The upgraded ZEPLIN-III, although not significantly bigger than ZEPLIN-II, will be able to achieve a sensitivity that is a factor of 30 better than CDMS, although it should take about two years to reach this level of operation. This factor of 30 is especially important because the theoretical models predict that this is the level of sensitivity needed to have a realistic chance of seeing a signal.

The major benefit of noble liquid technology over semi-conductor technology is that it is more easily scalable, which means that it should allow for bigger detectors in the future. Features of ZEPLIN-III include a much better ability to reject background events, lower radioactivity of materials used in construction to minimise contamination and spurious signals, and the use of higher electric fields to improve discrimination against any remaining background.

Anita Heward | alfa
Further information:
http://www.pppa.group.shef.ac.uk/boulby/boulby.php
http://www.shef.ac.uk/physics/research/pppa/research/dm/zeplin.php
http://astro.ic.ac.uk/Research/ZEPLIN-III/

More articles from Physics and Astronomy:

nachricht Tiny lasers from a gallery of whispers
20.09.2017 | American Institute of Physics

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>