Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fleet of Zeplins steps up search for dark matter particles

18.04.2007
The race for the first direct detection of dark matter will move into a new phase in the coming months as the ZEPLIN-II instrument is joined by ZEPLIN-III, the world’s most sensitive dark matter detector.

Dr Alexander Murphy, who is presenting the first results from the ZEPLIN-II detector at the RAS National Astronomy Meeting in Preston on 18th April said, “ZEPLIN-II is beginning its second search for dark matter particles, deep underground in a salt and potash mine in North Yorkshire, and we have been pouring through the first data looking for possible interactions with dark matter. Now, just last week, we’ve had the go-ahead to start operating our next generation detector, ZEPLIN-III. We will be tweaking both detectors to improve their sensitivity all the time and, over the next few months, we’ll be able to see signals that are many times fainter. This will give us a fantastic chance of making the first direct detection of a dark matter particle.”

The ZEPLIN-II instrument holds 31 kg of liquid xenon, cooled to a temperature of -110o Celsius. Theory suggests that, from time to time, a dark matter particle will scatter from the xenon leaving a very small signal behind. Extremely sensitive light detectors view the xenon looking for such a telltale sign. ZEPLIN-II, has proved the world’s most sensitive detector of this type (noble liquid technology) and is surpassed only by the Cryogenic Dark Matter Search (CDMS), based in Minnesota, which uses a semiconductor technology. With a few tweaks, the team expects ZEPLIN-II to be able to match the sensitivity of CDMS within a few months.

The upgraded ZEPLIN-III, although not significantly bigger than ZEPLIN-II, will be able to achieve a sensitivity that is a factor of 30 better than CDMS, although it should take about two years to reach this level of operation. This factor of 30 is especially important because the theoretical models predict that this is the level of sensitivity needed to have a realistic chance of seeing a signal.

The major benefit of noble liquid technology over semi-conductor technology is that it is more easily scalable, which means that it should allow for bigger detectors in the future. Features of ZEPLIN-III include a much better ability to reject background events, lower radioactivity of materials used in construction to minimise contamination and spurious signals, and the use of higher electric fields to improve discrimination against any remaining background.

Anita Heward | alfa
Further information:
http://www.pppa.group.shef.ac.uk/boulby/boulby.php
http://www.shef.ac.uk/physics/research/pppa/research/dm/zeplin.php
http://astro.ic.ac.uk/Research/ZEPLIN-III/

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>