Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UK scientists sift superfine Stardust

18.04.2007
UK scientists are preparing to analyse miniscule impact craters collected by NASA's Stardust mission as it flew through interstellar dust streams. These craters contain the residues of the dust particles that are the seeds of our own Solar System.

A UK consortium of researchers from the University of Leicester, Natural History Museum, Kent University, Glasgow University and Open University have been studying the cometary samples which were delivered a few weeks after the samples were returned to Earth. The interstellar dust particles are about ten nanometres across (one hundred thousandth of a millimetre) and they are even smaller than many of the particles that Stardust collected when it flew through the coma of Comet Wild 2.

In a presentation at the Royal Astronomical Society's National Astronomy Meeting in Preston on 18th April, Dr John Bridges from the University of Leicester will describe how techniques developed to analyse material from the comet's tail will be used to study the interstellar particles. A focussed beam of electrically charged particles will be used to extract the residue of the dust from the craters. Once the material is no longer shielded by the crater walls, it can be examined using a transmission electron microscope.

"The interstellar dust particles collected by Stardust are so tiny that they pose huge analytical challenges," said Dr Bridges. "Having spent the time perfecting our techniques and analysing Comet Wild 2, we are very excited by the prospect of these samples. Our analysis of samples from the comet's tail revealed that its composition was more complex than we'd thought and indicated an unexpected mixing of refractory and volatile material in the early Solar System. The interstellar particles will take us one step farther back and allow us to look at the composition of the dust cloud from which the Solar System formed."

The Stardust mission spent 4 months collecting interstellar dust during its 2.88 million mile journey to Comet Wild-2 and back to Earth. The return capsule, containing the dust and samples from the comet's tail, landed in the desert in Utah in January 2006. Since then, samples have been distributed to selected researchers around the world.

FURTHER INFORMATION

The Stardust Mission

Stardust, a project under NASA's Discovery Program of low-cost, highly focused science missions, was built by Lockheed Martin Space Systems, Denver, Colorado, and is managed by the Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology in Pasadena. The mission's Principal Investigator is Dr. Donald Brownlee of the University of Washington in Seattle, WA. UK involvement is funded by the Science and Technology Facilities Council.

More information on the Stardust mission is available at http://stardust.jpl.nasa.gov/home/index.html.

Anita Heward | alfa
Further information:
http://stardust.jpl.nasa.gov/home/index.html

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>