Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UK scientists sift superfine Stardust

18.04.2007
UK scientists are preparing to analyse miniscule impact craters collected by NASA's Stardust mission as it flew through interstellar dust streams. These craters contain the residues of the dust particles that are the seeds of our own Solar System.

A UK consortium of researchers from the University of Leicester, Natural History Museum, Kent University, Glasgow University and Open University have been studying the cometary samples which were delivered a few weeks after the samples were returned to Earth. The interstellar dust particles are about ten nanometres across (one hundred thousandth of a millimetre) and they are even smaller than many of the particles that Stardust collected when it flew through the coma of Comet Wild 2.

In a presentation at the Royal Astronomical Society's National Astronomy Meeting in Preston on 18th April, Dr John Bridges from the University of Leicester will describe how techniques developed to analyse material from the comet's tail will be used to study the interstellar particles. A focussed beam of electrically charged particles will be used to extract the residue of the dust from the craters. Once the material is no longer shielded by the crater walls, it can be examined using a transmission electron microscope.

"The interstellar dust particles collected by Stardust are so tiny that they pose huge analytical challenges," said Dr Bridges. "Having spent the time perfecting our techniques and analysing Comet Wild 2, we are very excited by the prospect of these samples. Our analysis of samples from the comet's tail revealed that its composition was more complex than we'd thought and indicated an unexpected mixing of refractory and volatile material in the early Solar System. The interstellar particles will take us one step farther back and allow us to look at the composition of the dust cloud from which the Solar System formed."

The Stardust mission spent 4 months collecting interstellar dust during its 2.88 million mile journey to Comet Wild-2 and back to Earth. The return capsule, containing the dust and samples from the comet's tail, landed in the desert in Utah in January 2006. Since then, samples have been distributed to selected researchers around the world.

FURTHER INFORMATION

The Stardust Mission

Stardust, a project under NASA's Discovery Program of low-cost, highly focused science missions, was built by Lockheed Martin Space Systems, Denver, Colorado, and is managed by the Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology in Pasadena. The mission's Principal Investigator is Dr. Donald Brownlee of the University of Washington in Seattle, WA. UK involvement is funded by the Science and Technology Facilities Council.

More information on the Stardust mission is available at http://stardust.jpl.nasa.gov/home/index.html.

Anita Heward | alfa
Further information:
http://stardust.jpl.nasa.gov/home/index.html

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>