Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UK scientists sift superfine Stardust

18.04.2007
UK scientists are preparing to analyse miniscule impact craters collected by NASA's Stardust mission as it flew through interstellar dust streams. These craters contain the residues of the dust particles that are the seeds of our own Solar System.

A UK consortium of researchers from the University of Leicester, Natural History Museum, Kent University, Glasgow University and Open University have been studying the cometary samples which were delivered a few weeks after the samples were returned to Earth. The interstellar dust particles are about ten nanometres across (one hundred thousandth of a millimetre) and they are even smaller than many of the particles that Stardust collected when it flew through the coma of Comet Wild 2.

In a presentation at the Royal Astronomical Society's National Astronomy Meeting in Preston on 18th April, Dr John Bridges from the University of Leicester will describe how techniques developed to analyse material from the comet's tail will be used to study the interstellar particles. A focussed beam of electrically charged particles will be used to extract the residue of the dust from the craters. Once the material is no longer shielded by the crater walls, it can be examined using a transmission electron microscope.

"The interstellar dust particles collected by Stardust are so tiny that they pose huge analytical challenges," said Dr Bridges. "Having spent the time perfecting our techniques and analysing Comet Wild 2, we are very excited by the prospect of these samples. Our analysis of samples from the comet's tail revealed that its composition was more complex than we'd thought and indicated an unexpected mixing of refractory and volatile material in the early Solar System. The interstellar particles will take us one step farther back and allow us to look at the composition of the dust cloud from which the Solar System formed."

The Stardust mission spent 4 months collecting interstellar dust during its 2.88 million mile journey to Comet Wild-2 and back to Earth. The return capsule, containing the dust and samples from the comet's tail, landed in the desert in Utah in January 2006. Since then, samples have been distributed to selected researchers around the world.

FURTHER INFORMATION

The Stardust Mission

Stardust, a project under NASA's Discovery Program of low-cost, highly focused science missions, was built by Lockheed Martin Space Systems, Denver, Colorado, and is managed by the Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology in Pasadena. The mission's Principal Investigator is Dr. Donald Brownlee of the University of Washington in Seattle, WA. UK involvement is funded by the Science and Technology Facilities Council.

More information on the Stardust mission is available at http://stardust.jpl.nasa.gov/home/index.html.

Anita Heward | alfa
Further information:
http://stardust.jpl.nasa.gov/home/index.html

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>