Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meet the Nano-nauts - dust swarms for planetary explortion

18.04.2007
Engineers at the University of Glasgow are designing a new breed of planetary explorers: tiny, shape-shifting devices that can be carried on the wind like dust particles but are also smart enough to communicate, fly in formation and take scientific measurements.

Smart dust particles consist of a computer chip, about a millimetre in dimension, surrounded by a polymer sheath that can be made to wrinkle or smooth out by applying a small voltage. Roughening the surface of the polymer means the drag on the smart dust particle increases and it floats higher in the air; conversely, smoothing out the surface causes the particle to sink. Simulations show that by switching between rough and smooth modes, the smart dust particles can gradually hop towards a target, even in swirling winds.

Professor John Barker, who will be describing possible applications of smart dust at the RAS National Astronomy Meeting in Preston on 18th April said, “The concept of using smart dust swarms for planetary exploration has been talked about for some time, but this is the first time anyone has looked at how it could actually be achieved. Computer chips of the size and sophistication needed to make a smart dust particle now exist and we are looking through the range of polymers available to find one that matches our requirements for high deformation using minimal voltages.”

Smart dust particles would use wireless networking to communicate with each other and form swarms. Professor Barker explains, “We envisage that most of the particles can only talk to their nearest neighbours but a few can communicate at much longer distances. In our simulations we’ve shown that a swarm of 50 smart dust particles can organise themselves into a star formation, even in turbulent wind. The ability to fly in formation means that the smart dust could form a phased array. It would then be possible to process information between the distributed computer chips and collectively beam a signal back to an orbiting spacecraft.”

In order for the smart dust to be useful in planetary exploration, they would need to carry sensors. With current technology, chemical sensors tend to be rather large for the sand-grain sized particles that could be carried by the thin Martian atmosphere. However, the atmosphere of Venus is much denser and could carry smart sensors up to a few centimetres in size. Professor Barker said, “Scientific studies could theoretically be carried out on Venus using the technology we have now. However, miniaturisation is coming on rapidly. By 2020, we should have chips that have components which are just a few nanometres across, which means our smart particles would behave more like macro-molecules diffusing through an atmosphere rather than dust grains.”

The group at Glasgow thinks it will be some years before smart dust is ready to launched into space. Professor Barker said, “We are still at an early stage, working on simulations and components. We have a lot of obstacles to overcome before we are even ready to physically test our designs. However, the potential applications of smart dust for space exploration are very exciting. Our first close-up studies of extra-solar planets could come from a smart dust swarm delivered to another solar system by ion-drive.”

Anita Heward | alfa
Further information:
http://userweb.elec.gla.ac.uk/j/jbarker/sd.html
http://www.specknet.org/about/

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>