Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rosetta and New Horizons watch Jupiter in joint campaign

02.04.2007
ESA’s Rosetta and NASA’s New Horizons are working together in their joint campaign to observe Jupiter. A preliminary analysis of the data from Rosetta’s Alice ultraviolet spectrometer indicates that the data quality is excellent and that good science is expected to follow.

New Horizons made its closest approach to Jupiter on 28 February 2007. Its principal objective was to use the gravity of the giant planet to slingshot it onwards to its rendezvous with Pluto, planned for 2015. However, as Alan Stern, Southwest Research Institute, San Antonio, Texas (USA), and New Horizon’s Principal Investigator says, “We couldn’t pass up this opportunity to study Jupiter’s meteorology, rings, aurorae, satellites, and magnetosphere.”

Rosetta, just after having swung by Mars and while on its way to comet 67P-Churyumov Gerasimenko, played an important role in this research, providing global observations of Jupiter’s aurora and the Io plasma torus that can be correlated with New Horizons’ detailed in-situ measurements.

Rosetta’s observation of Jupiter began on the same day as the New Horizons swingby. Because Rosetta is presently close to Mars and Jupiter is still far away, to some of the instruments the giant planet is just a pinprick of light. Nevertheless, Rosetta’s Alice instrument splits this light into a spectrum, in which the separate contributing regions can be distinguished.

“We have now clearly separated the three components that make up the spectrum,” says Alice team member Andrew Steffl, Southwest Research Institute. The first component is simply sunlight, reflecting off Jupiter’s cloud tops. The second part of the spectrum is composed of ultraviolet emission given off by particles ejected in volcanic eruptions by Jupiter’s moon Io. The third is light from Jupiter’s aurorae, caused by particles striking the planet’s atmosphere, some from the Sun, some ejected from Io.

Alice is an ultraviolet imaging spectrometer, designed to analyse the composition and density of gas molecules, and an almost identical Alice UVS instrument is on New Horizons. Rosetta’s Alice will measure the rates at which water vapour, carbon monoxide and carbon dioxide are given off by comet Churyumov-Gerasimenko, after the rendezvous in 2014. New Horizons’ Alice instrument will study the tenuous atmosphere at Pluto in mid-2015.

“New Horizons cannot observe Jupiter using its Alice instrument at the moment,” says Joel Parker, also at the Southwest Research Institute, and Alice Project Manager. This is because New Horizons’ Alice would have to be pointed back at Jupiter, towards the Sun. If bright sunlight fell into the instrument, it could damage the sensitive optics. Hence the scientists will not take the risk.

Instead, other instruments on New Horizons can detect the actual particles that are trapped in Jupiter’s magnetic field, but to better understand this data, spectra of Jupiter’s aurora and the Io torus are also needed. This is where Rosetta’s Alice makes its important contribution.

Some of the things the team will be looking for are solar wind events. These are gusts in the number of electrically charged particles that the Sun gives out. When they strike the magnetic field of Jupiter, they can cause the aurora to shine more brightly. Rosetta’s Alice will see this, too, and the team can then look for changes in the particles detected by New Horizons. “This is a really nice synergy between the two projects,” says Parker.

Rosetta’s observations are set to continue until 8 May, and when complete, will include some 400 hours worth of observations. Using Rosetta’s Alice is proving to be invaluable to the team in their preparations for the 2014 comet rendezvous. “Every time we use the instrument, we learn more about how to get the most out of it when we arrive at the comet,” says Parker.

Gerhard Schwehm | alfa
Further information:
http://www.esa.int/SPECIALS/Rosetta/SEMHFHT4LZE_0.html

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>