Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging 'gridlock' in high-temperature superconductors

07.03.2007
Superconductivity -- the conduction of electricity with zero resistance -- sometimes can, it seems, become stalled by a form of electronic "gridlock."

In a standard scanning tunneling microscope (STM) topographic image of the surface of a cuprate semiconductor (left) atoms are arranged neatly in a crystal lattice (the occasional crosses represent atoms missing from the surface). At right is an image based in the ratio of up and down current flow through the STM tip showing in yellow the probable locations of "holes" where electrons are missing from the crystal structure. Short yellow bars are aligned with copper-oxygen-copper bonds, and Cornell researchers say it is significant that these areas are distributed in random locations and directions. In some cases the arrangement is a unidirectional four crystal-lattice-spacing wide domain, or "nanostripe."

A possible explanation why is offered by new research at Cornell University. The research, reported March 5 at the annual meeting of the American Physical Society in Denver, concerns certain copper oxides -- known as cuprates -- that can become high-temperature superconductors, but also can, in a slightly different configuration, become stalled by the "gridlock."

Understanding how and why that transition takes place is a crucial question for cuprate superconductivity research because, if it did not, the maximum temperatures for superconductivity could conceivably be much higher.

Scanning lightly hole-doped cuprate crystals with a highly precise scanning tunneling microscope (STM) has revealed strong variations in electronic structure with some copper-oxygen-copper (Cu-O-Cu) bonds distributed randomly through the crystal apparently exhibiting "holes" where electrons are missing. The researchers also found larger rectangular regions with missing electrons that were spaced four units of the crystal lattice apart, and may represent the first direct observation of long-sought electronic "stripes" in cuprates.

Yuhki Kohsaka, a postdoctoral researcher working with J.C. Séamus Davis, Cornell professor of physics, reported on the research. A paper on the work by Kohsaka, Davis and others is the cover story in the March 9 edition of Science.

The superconducting phenomenon was first discovered in metals cooled to less than about 4 degrees Celsius above absolute zero (-273 degrees Celsius or -459 degrees Fahrenheit) with liquid helium. Recently, superconductivity at much higher temperatures was discovered in cuprates. Pure cuprates are normally insulators, but when doped with small numbers of other atoms they become superconductors at temperatures as high as 148 degrees above absolute zero (-125 Celsius). The impurities break up the orderly crystal structure and create "holes" where electrons ought to be.

At 16 percent hole-density the cuprates display the highest temperature superconductivity of any known material. But if hole-density is reduced by just a few percent, the superconductivity vanishes precipitously and the materials become highly resistant.

Previous experiments have given evidence that long-range patterns of "stripes" of alternating high- and low-charge density, spaced four units of the crystal lattice apart, exist in doped cuprates, but no imaging technique had been able to detect them.

An STM uses an atom-sized tip that moves in atom-sized steps across a surface. When a voltage is applied between the tip and the surface, a small current known as a "tunneling current" flows between them. By adjusting the height of the tip above the surface to produce a constant current, researchers can see the shapes of individual atoms. And with the exceptional precision of the STM operated by Davis and colleagues at Cornell, the spatial arrangement of electronic states can be imaged. However, the researchers explain in their paper, this technique has serious limitations in imaging the distribution of holes.

The innovation in the new research, based on a suggestion by Nobel laureate Philip W. Anderson, professor emeritus at Princeton University, is to compare current flow in opposite directions at each point in the scan. In simple terms, at regions of the crystal containing fewer electrons (more holes), more electrons can flow down from the tip into these voids than up. The process is called TA-imaging, for tunneling asymmetry.

The Cornell researchers studied cuprate crystals in which about 10 percent of the electrons in the crystal lattice were removed and replaced by holes. The researchers imaged two cuprates with very different chemistry, crystal structure and doping characteristics and found virtually identical results, which they attribute entirely to the spatial arrangement of electrons in the crystal. The areas where TA-imaging suggests that there are holes appear to be centered on oxygen atoms within the Cu-O-Cu bond. This is what has long been expected based on X-ray scattering studies. But "the big surprise," Davis said, "is that when you map this stuff for large distances across the surface no orderly patterns are observed. We had no picture of this before." Perhaps even more exciting, he said, is the discovery that over larger areas the holes do appear to be arranged in patterns that are rectangular and exactly four crystal lattice spaces wide. These so called "nanostripes" are aligned with the crystal lattice but otherwise distributed at random.

"It's plausible that when you increase the number of holes these 'nanostripes' will combine into the orderly stripes seen in other experiments," Davis said. A next step, he said, is to use TA-imaging on more heavily doped materials that exhibit such stripes to see if they are made up of these oxygen-centered holes. But the key challenge, he added, is to understand precisely how the process of hole localization into the patterns seen here suppresses superconductivity.

Co-authors of the paper include graduate students Curry Taylor, Kazuhiro Fujita and Andrew Schmidt of the Laboratory of Atomic and Solid State Physics at Cornell. The Cornell researchers worked in collaboration with scientists at the Université de Sherbrooke, Canada, the Universities of Tokyo and Kyoto and the National Institute of Advanced Industrial Science and Technology in Japan.

Press Relations Office | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>