Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA gives go-ahead to build BepiColombo

27.02.2007
BepiColombo, ESA's mission to explore planet Mercury, has been definitively 'adopted' by the Agency’s Science Programme Committee (SPC) last Friday. The mission will now start its industrial implementation phase, to prepare for launch in August 2013.

BepiColombo is the next European planetary exploration project, and will be implemented in collaboration with Japan. A satellite 'duo' – consisting of an orbiter for planetary investigation and one for magnetospheric studies – will reach Mercury after a six-year journey towards the inner Solar System, to eventually perform the most extensive and detailed study of the planet ever performed so far.

The 'Mercury Planetary Orbiter' (MPO) will be under ESA responsibility, while the Mercury Magnetospheric Orbiter (MMO) will be under the responsibility of the Japan Aerospace Exploration Agency (JAXA). The Mercury Transfer Module (MTM), also under ESA responsibility, will provide the electrical and chemical propulsion required to perform the cruise to Mercury. These three modules assembled together for the launch and cruise phase make up a single composite spacecraft.

The MPO will carry a highly sophisticated suite of eleven scientific instruments, ten of which will be provided by Principal Investigators through national funding by ESA Member States and one from Russia.

The MMO will carry five advanced scientific experiments that will also be provided by nationally funded Principal investigators, one European and four from Japan. Significant European contributions are also provided to the Japanese instruments.

After a competitive definition phase started in 2001, ESA is now ready to award Astrium GmbH (Friedrichshafen, Germany) with the prime contract for the BepiColombo implementation phase, consisting of the mission design and of the design, development and integration of the 'cruise-composite' spacecraft. Astrium GmbH will also provide engineering support to the launch campaign and the in-orbit commissioning phase.

Reaching Mercury and placing a spacecraft in a stable orbit around it is a difficult task due to the gravity of the Sun. BepiColombo will reach the planet - visited only by NASA's Mariner 10 in the mid seventies - in a truly novel way.

During the cruise, the mission will make clever use of the gravity of the Moon, Earth, Venus and Mercury itself in combination with the thrust provided by solar-electric propulsion. This innovative combination of low thrust space propulsion and gravity assist has been demonstrated by ESA's technology mission, SMART-1.

When approaching Mercury, the transfer module will be separated and the two-spacecraft composite will use conventional rocket engines and the so-called 'weak stability boundary capture technique' to bring it into polar orbit around the planet. When the MMO orbit is reached, the MPO will separate and lower its altitude by means of chemical propulsion to its operational orbit. Observations from orbit will go on for at least one Earth year.

Operating a spacecraft in the harsh environment of Mercury represents a true technological challenge. Mercury is the closest planet to the Sun, and the direct solar radiation hitting the spacecraft is about ten times more intense than in Earth's proximity.

Furthermore Mercury's surface, whose temperature can reach up to 470°C, not only reflects solar radiation but also emits thermal infrared radiation. Therefore, the probe will have to withstand extreme thermal conditions.

This will be one of the driving factors in the probe's design - for instance, it will drive the design of the multi-layer blanket to insulate the spacecraft and of its heat radiators.

Jan van Casteren | alfa
Further information:
http://www.esa.int/esaSC/SEMC8XBE8YE_index_0.html

More articles from Physics and Astronomy:

nachricht Comet or asteroid? Hubble discovers that a unique object is a binary
21.09.2017 | NASA/Goddard Space Flight Center

nachricht First users at European XFEL
21.09.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>