Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Quantum hall effect observed at room temperature

Using the highest magnetic fields in the world, an international team of researchers has observed the quantum Hall effect – a much studied phenomenon of the quantum world – at room temperature.

The quantum Hall effect was previously believed to only be observable at temperatures close to absolute zero (equal to minus 459 degrees). But when scientists at the National High Magnetic Field Laboratory in the U.S. and at the High Field Magnet Laboratory in the Netherlands put a recently developed new form of carbon called graphene in very high magnetic fields, scientists were surprised by what they saw.

"At room temperature, these electron waves are usually destroyed by the jiggling atoms and the quantum effects are destroyed," said Nobel Prize winner Horst Stormer, physics professor at Columbia University and one of the paper's authors. "Only on rare occasions does this shimmering quantum world survive to the temperature scale of us humans."

The quantum Hall effect is the basis for the international electrical resistance standard used to characterize even everyday materials that conduct electricity, such as the copper wires in a home. It was first discovered in 1980 by the German physicist Klaus von Klitzing, who was awarded a Nobel Prize in 1985 for his discovery. Until recently the quantum Hall effect was considered to belong to the realm of very low temperatures.

That opinion began to change, however, with the ability to create very high magnetic fields and with the discovery of graphene, a single atomic sheet of atoms about as strong as diamond. Together, these two things have allowed scientists to push this fragile quantum effect all the way to room temperature. Now there is a way to see curious and often surprising quantum effects, such as frictionless current flow and resistances as accurate as a few parts per billion, even at room temperature.

The research was carried out by scientists from the University of Manchester in England, Columbia University in New York, the National High Magnetic Field Laboratory in Tallahassee, Florida, the High Field Magnet Laboratory in Nijmegen, Netherlands, and the Foundation for Fundamental Research on Matter, also in the Netherlands. Their article appears in Science Express, the advanced online publication of Science magazine, a top American journal with international stature.

The scientists believe that these findings may one day lead to a compact resistance standard working at elevated temperatures and magnetic fields that are easily attainable at the National High Magnetic Field Laboratory.

"The more we understand the strange world of quantum physics, the better we can design the next generation of ultra-small electrical devices, which already are pushing into the quantum regime," said Gregory S. Boebinger, director of the U.S. magnet lab.

"This is a really amazing discovery for a quantum Hall physicist," said Uli Zeitler, senior scientist at the High Field Magnet Laboratory. "For more than two decades, we've focused our research on exploring new frontiers such as very low temperatures and extremely sophisticated materials, and now it appears that we can just measure a quantum Hall effect in a pencil-trace and at room temperature."

The room temperature quantum Hall effect was discovered independently in the two high field labs, in the 45-tesla Hybrid magnet in Tallahassee and in a 33-tesla resistive magnet in Nijmegen. Both research groups agreed that a common announcement on both sides of the Atlantic was the right thing to do.

"Because so many scientists are exploring this exciting new material, we are all on this roller coaster together," said Boebinger. "Sometimes it makes sense to put competitiveness aside and write a better paper together."

Susan Ray | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Gamma ray camera offers new view on ultra-high energy electrons in plasma
28.10.2016 | American Physical Society

nachricht Scientists measure how ions bombard fusion device walls
28.10.2016 | American Physical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>