Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers create new super-thin laser mirror

14.02.2007
Engineers at the University of California, Berkeley, have created a new high-performance mirror that could dramatically improve the design and efficiency of the next generation of devices relying upon laser optics, including high-definition DVD players, computer circuits and laser printers.

The new mirror packs the same 99.9 percent reflective punch as current high-grade mirrors, called distributed Bragg reflectors (DBRs), but it does so in a package that is at least 20 times thinner, functional in a considerably wider spectrum of light frequencies, and easier to manufacture. All these characteristics present critical advantages for today's ever smaller integrated optical devices.

Connie J. Chang-Hasnain, director of UC Berkeley's Center for Optoelectronic Nanostructured Semiconductor Technologies, developed the super-thin mirror, or "high-index contrast sub-wavelength grating (HCG)," with her graduate students, Michael Huang and Ye Zhou. Their work is described in this month's issue of the journal Nature Photonics.

"Today's semiconductor lasers demand mirrors that can deliver high reflectivity, but without the extra thickness," said Chang-Hasnain, who is also a UC Berkeley professor of electrical engineering and computer science. "When you reduce the thickness of a mirror, you are significantly reducing the mass of the device, which also translates into lower power consumption. The mirror we've developed overcomes the hurdles that have stalled the advancement of certain lasers."

To get the coherent, single wavelength light of a laser beam requires a pair of mirrors at opposite ends of a photon-generating gain medium. Light photons of a specific frequency bounce back and forth between the mirrors, building up energy with each pass. As this effect levels off, the gain is said to be saturated, and the light energy is transferred into a laser beam.

Early versions of semiconductor lasers used crystal for the mirrors, which yielded a mere 30 percent reflection. Such a low reflectivity is too inefficient for vertical-cavity surface-emitting lasers (VCSEL) – used in short-range optical communications, optical mice for computers and other applications requiring low power consumption. VCSELs have a particularly short gain medium, so a highly reflective mirror is needed.

High reflectivity can be achieved with DBRs, in which light passes through alternating layers of aluminum gallium arsenide, which has a refractive index of 3.0, and gallium arsenide, which has a higher refractive index of 3.6. The difference in refractive indices allows a small amount of light to be reflected from each pair of alternating layers. The light from the multiple layers adds up to form a strongly reflected coherent beam.

"DBRs can reflect 99.9 percent of light, but it can take up to 80 layers of material to achieve this high reflectivity," said Huang, lead author of the paper. "The DBR ends up being a relatively thick 5 micrometers wide. The precision necessary for the layers also requires a complicated manufacturing process. Our mirror is thinner and will be easier to manufacture, which keeps the cost low."

Instead of multiple levels of alternating refractive-index layers, the HCG mirror developed by the UC Berkeley engineers contains only one pair. In this study, the engineers used aluminum gallium arsenide for the high refractive index layer, coupled with a layer of air, which has a very low refractive index of 1. In addition, the high refractive index layer contained grooves spaced by a distance that is less than a wavelength of light.

In this configuration, light hitting the mirror surface was directed over the grooves. As the light waves passed each semiconductor-air interface, they were strongly reflected back in the opposite direction. The researchers noted that other materials could replace air as the low refractive index material. Silicon dioxide, for instance, has a refractive index of 1.5.

To demonstrate the reflectivity of the HCG, the researchers replaced one of the two DBRs in a vertical-cavity surface-emitting laser with the new mirror. They confirmed that the HCG is capable of providing reflectivity greater than 99.9 percent, equivalent to the DBR.

"The HCG mirror overcomes many of the hurdles that had slowed the advance of VCSEL research," said study co-author Zhou. "In addition to being thinner, it has the advantage of working in a broader range of light frequencies."

The latter attribute is particularly important as optical disc technologies increasingly employ blue-violet lasers, which operate on a shorter wavelength than red lasers. Shorter wavelengths make it possible to focus on smaller units, enabling significantly higher density data storage.

The engineers are also studying applications for the mobile HCG mirror in micro-electromechanical systems (MEMS), such as wavelength tunable lasers, which are used in broadband communications.

"Reducing the size of the laser's mirror also means a dramatic reduction in weight, which is particularly important for high-speed MEMS devices," said Chang-Hasnain.

The researchers added that it may be possible to print this mirror on various surfaces, and that it could one day be used to create organic, plastic displays that can be rolled up for easy transport.

"There is a wide range of products based upon laser optics that could benefit with this thinner mirror," said Huang. "They include light emitting diodes, photovoltaic devices, sensors, computer chips and telecommunications equipment."

Sarah Yang | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>