Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unexpected cooling effect in Saturn's upper atmosphere

26.01.2007
UK researchers from University College London (UCL), along with colleagues from Boston University, have found that the hotter than expected temperature of Saturn's upper atmosphere – and that of the other giant planets – is not due to the same mechanism that heats the atmosphere around the Earth's Northern Lights. Reporting in Nature (25th January) the researchers findings thus rule out a long held theory.

A simple calculation to give the expected temperature of a planet's upper atmosphere balances the amount of sunlight absorbed by the energy lost to the lower atmosphere. But the calculated values don't tally with the actual observations of the Gas Giants: they are consistently much hotter.

It has long been thought that the culprit behind the heating process was the ionosphere, being driven by the planet's magnetic field, or magnetosphere. By using numerical models of Saturn's atmosphere the researchers found that the net effects of the winds driven by polar energy inputs is not to heat the atmosphere but to actually cool it.

Professor Alan Aylward, of the UCL Department of Physics & Astronomy, and an author of the study, explains: "The aurora has been studied for over a hundred years, yet our discovery takes us back to first principles. We need to re-examine our basic assumptions about planetary atmospheres and what causes the observed heating."

"Studying what happens on planets such as Saturn gives us an insight into what happens closer to home. Planets can lose their atmospheres as we see with Mars. Do we completely understand how this happens? Are there mechanisms heating the gas and causing it to escape that we do not yet fully understand? By studying what happens in other atmospheres we may find clues to Earth's future."

Gill Ormrod | EurekAlert!
Further information:
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>