Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unexpected Cooling effect in Saturn’s upper atmosphere

26.01.2007
UK researchers from University College London (UCL), along with colleagues from Boston University, have found that the hotter than expected temperature of Saturn’s upper atmosphere – and that of the other giant planets – is not due to the same mechanism that heats the atmosphere around the Earth’s Northern Lights. Reporting in Nature (25th January) the researchers findings thus rule out a long held theory.

A simple calculation to give the expected temperature of a planet’s upper atmosphere balances the amount of sunlight absorbed by the energy lost to the lower atmosphere. But the calculated values don’t tally with the actual observations of the Gas Giants: they are consistently much hotter.

It has long been thought that the culprit behind the heating process was the ionosphere, being driven by the planet’s magnetic field, or magnetosphere. By using numerical models of Saturn’s atmosphere the researchers found that the net effects of the winds driven by polar energy inputs is not to heat the atmosphere but to actually cool it.

Professor Alan Aylward, of the UCL Department of Physics & Astronomy, and an author of the study, explains: “The aurora has been studied for over a hundred years, yet our discovery takes us back to first principles. We need to re-examine our basic assumptions about planetary atmospheres and what causes the observed heating.”

“Studying what happens on planets such as Saturn gives us an insight into what happens closer to home. Planets can lose their atmospheres as we see with Mars. Do we completely understand how this happens? Are there mechanisms heating the gas and causing it to escape that we do not yet fully understand? By studying what happens in other atmospheres we may find clues to Earth’s future.”

The study was funded by the UK Particle Physics and Astronomy Research Council (PPARC) and Sun Microsystems Ltd and carried out using the HiPerSPACE facility at University College London.

Contacts

Gill Ormrod – PPARC Press Office
Tel: 01793 442012. Email: gill.ormrod@pparc.ac.uk
Professor Alan Aylward, UCL Department of Physics & Astronomy
Tel: +44 (0)20 7679 2446, Email: a.aylward@ucl.ac.uk
Judith H Moore, UCL Media Relations
Tel: +44 (0) 20 7679 7678, Mobile: +44 (0)77333 075 96, Email: judith.moore@ucl.ac.uk

Gill Ormrod | alfa
Further information:
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>