Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The jet stream of Titan

25.01.2007
A pair of rare celestial alignments that occurred in November 2003 helped an international team of astronomers investigate the far-off world of Titan. In particular, the alignments helped validate the atmospheric model used to design the entry trajectory for ESA's Huygens probe.

Now the unique results are helping to place the descent of Huygens in a global context, and to investigate the upper layers of Titan’s atmosphere.



This artist’s impression shows the ‘light curve’ produced by a star passing behind Titan, Saturn’s biggest moon. When such occultation events take place, the light from the star is blocked out. Because Titan has a thick atmosphere, the light does not ‘turn off’ straight away. Instead, it drops gradually as the blankets of atmosphere slide in front of the star, as the light-curve drawn here shows. The way the light drops tells astronomers about the atmosphere of Titan. The peak at the centre of the light curve represents the bright flash occurring at the very middle of the occultation. This is due to the fact that Titan’s atmosphere acts as a lens, making the light emitted by the star passing behind converge into a focal point and produce the flash.

Occasionally Titan passes directly in front of a distant star. When it does so, the light from the star is blocked out. Because Titan has a thick atmosphere, the light does not 'turn off' straight away. Instead, it drops gradually as the blankets of atmosphere slide in front of the star. The way the light drops tells astronomers about the atmosphere of Titan.

By pure chance on 14 November 2003, fourteen months before Huygens’ historic descent through Titan's atmosphere, Titan passed in front of two stars, just seven and a half hours apart. Bruno Sicardy, Observatoire de Paris, France, organised expeditions to record the occultations, as such events are called.

The first occultation was visible just after midnight from the Indian Ocean and the southern half of Africa. The second could be seen from Western Europe, the Atlantic Ocean, Northern and Central Americas. Teams of astronomers set up along the occultation tracks.

Sicardy was looking for one observation in particular. "Titan's atmosphere acts like a lens, so at the very middle of the occultation, a bright flash occurs," explains Sicardy. If Titan's atmosphere were a perfectly uniform layer, the central flash would be a pinprick of light, visible only at the very centre of the planet's shadow. However, comparing the results from many telescopes, Sicardy found that the central flash fell across the Earth in a triangular shape.

"It is like the light falling through a glass of water and making bright patterns on the table. The focused light is not perfectly round because the glass is not a perfect lens," says Sicardy. Analysing the shape of the flash showed that Titan’s atmosphere was flattened at the north pole. This was because at the time of the occultation, Titan's south pole was tilted towards the Sun. This warmed the atmosphere there, causing it to rise and move towards the north of the moon, where the atmosphere cooled and sank towards the surface.

There was one other key discovery that the occultation data allowed Sicardy and his team to make. A fast moving, high altitude wind (above 200 kilometres) was blowing around Titan at latitude of 50 degrees north. They estimated that it was moving at 200 metres per second (or 720 kilometres per hour) and would encircle the planet in less than one terrestrial day.

"It is like the jet stream on Earth," says Sicardy, "Furthermore, we told the Huygens team to expect some bumps near 510 kilometres altitude, due to a narrow and sudden temperature variation."

Indeed, Huygens was jolted by exactly such a layer during its 14 January 2005 entry. "A temperature inversion was indeed detected by the accelerometers during entry at this very altitude" says Jean-Pierre Lebreton, Huygens project scientist.

The work does not stop there. Even though the Huygens descent took place almost two years ago, the understanding of its data continues to provide key insights into Titan.

Jean-Pierre Lebreton | alfa
Further information:
http://www.esa.int/SPECIALS/Cassini-Huygens/SEMQO5SMTWE_0.html

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>