Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The jet stream of Titan

25.01.2007
A pair of rare celestial alignments that occurred in November 2003 helped an international team of astronomers investigate the far-off world of Titan. In particular, the alignments helped validate the atmospheric model used to design the entry trajectory for ESA's Huygens probe.

Now the unique results are helping to place the descent of Huygens in a global context, and to investigate the upper layers of Titan’s atmosphere.



This artist’s impression shows the ‘light curve’ produced by a star passing behind Titan, Saturn’s biggest moon. When such occultation events take place, the light from the star is blocked out. Because Titan has a thick atmosphere, the light does not ‘turn off’ straight away. Instead, it drops gradually as the blankets of atmosphere slide in front of the star, as the light-curve drawn here shows. The way the light drops tells astronomers about the atmosphere of Titan. The peak at the centre of the light curve represents the bright flash occurring at the very middle of the occultation. This is due to the fact that Titan’s atmosphere acts as a lens, making the light emitted by the star passing behind converge into a focal point and produce the flash.

Occasionally Titan passes directly in front of a distant star. When it does so, the light from the star is blocked out. Because Titan has a thick atmosphere, the light does not 'turn off' straight away. Instead, it drops gradually as the blankets of atmosphere slide in front of the star. The way the light drops tells astronomers about the atmosphere of Titan.

By pure chance on 14 November 2003, fourteen months before Huygens’ historic descent through Titan's atmosphere, Titan passed in front of two stars, just seven and a half hours apart. Bruno Sicardy, Observatoire de Paris, France, organised expeditions to record the occultations, as such events are called.

The first occultation was visible just after midnight from the Indian Ocean and the southern half of Africa. The second could be seen from Western Europe, the Atlantic Ocean, Northern and Central Americas. Teams of astronomers set up along the occultation tracks.

Sicardy was looking for one observation in particular. "Titan's atmosphere acts like a lens, so at the very middle of the occultation, a bright flash occurs," explains Sicardy. If Titan's atmosphere were a perfectly uniform layer, the central flash would be a pinprick of light, visible only at the very centre of the planet's shadow. However, comparing the results from many telescopes, Sicardy found that the central flash fell across the Earth in a triangular shape.

"It is like the light falling through a glass of water and making bright patterns on the table. The focused light is not perfectly round because the glass is not a perfect lens," says Sicardy. Analysing the shape of the flash showed that Titan’s atmosphere was flattened at the north pole. This was because at the time of the occultation, Titan's south pole was tilted towards the Sun. This warmed the atmosphere there, causing it to rise and move towards the north of the moon, where the atmosphere cooled and sank towards the surface.

There was one other key discovery that the occultation data allowed Sicardy and his team to make. A fast moving, high altitude wind (above 200 kilometres) was blowing around Titan at latitude of 50 degrees north. They estimated that it was moving at 200 metres per second (or 720 kilometres per hour) and would encircle the planet in less than one terrestrial day.

"It is like the jet stream on Earth," says Sicardy, "Furthermore, we told the Huygens team to expect some bumps near 510 kilometres altitude, due to a narrow and sudden temperature variation."

Indeed, Huygens was jolted by exactly such a layer during its 14 January 2005 entry. "A temperature inversion was indeed detected by the accelerometers during entry at this very altitude" says Jean-Pierre Lebreton, Huygens project scientist.

The work does not stop there. Even though the Huygens descent took place almost two years ago, the understanding of its data continues to provide key insights into Titan.

Jean-Pierre Lebreton | alfa
Further information:
http://www.esa.int/SPECIALS/Cassini-Huygens/SEMQO5SMTWE_0.html

More articles from Physics and Astronomy:

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

nachricht Solar wind impacts on giant 'space hurricanes' may affect satellite safety
19.09.2017 | Embry-Riddle Aeronautical University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>