Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sandia develops next generation of screening devices

24.01.2007
System detects hazardous, toxic material in concealed packaging

It might not be science fiction much longer.

Researchers at Sandia National Laboratories are developing the next generation of screening devices that will identify hazardous and toxic materials even if concealed by clothing and packaging materials.

Working in the underutilized terahertz (THz) portion of the electromagnetic spectrum that lies between microwaves and infrared, a team of Labs scientists is harnessing Sandia's strengths in a variety of technical areas with the goal of building a highly integrated miniaturized terahertz transmitter-receiver (transceiver) that could make a number of applications possible.

The project, the Terahertz Microelectronics Transceiver Grand Challenge, is in its second of three years of funding through Sandia's internal Laboratory Directed Research and Development program.

Sandia is a National Nuclear Security Administration (NNSA) laboratory.

"The technology being developed in the Grand Challenge can be used to scan for items such as concealed weapons or materials, explosives, and weapons of mass destruction," says Mike Wanke, principal investigator. "In addition, we believe it will find applications in advanced communication systems and high-resolution radars. However, the infrastructure needed to move the terahertz technology from the laboratory to the field is unavailable right now. We want to develop that infrastructure and invent the necessary technologies."

Wanke says over the past three years, "the terahertz situation has begun to change dramatically, primarily due to the revolutionary development of terahertz quantum cascade lasers."

These tiny lasers are semiconductor sources of terahertz radiation capable of output powers in excess of 100 mW. Previously, such powers could only be obtained by molecular gas lasers occupying cubic meters and weighing more than 100 kg, or free electron lasers weighing tons and occupying entire buildings.

Quantum cascade laser-based systems can be less than the size of a baseball and powered from a nine-volt battery. Sandia has been a leader in developing this new technology and in collaboration with MIT is responsible for several world performance records for the lasers. Also, the Labs and its partners are the only US institutions that have demonstrated the ability to grow the unique semiconductor crystals such that they can be turned into operating terahertz quantum cascade lasers. The crystals are grown by Sandia research scientist John Reno, an expert in molecular beam epitaxy, a method of laying down layers of materials with atomic thicknesses onto substrates.

Sandia researchers spent the first year of the Grand Challenge using Sandia's unique strengths in integrated microelectronics and device physics to develop components that are now being combined to create an integrated THz microelectronic transceiver, a core enabling element.

The team is currently developing the receiver, doing systems tests and exploring packaging requirements. At the end of three years, the researchers expect to have an actual working prototype capable of detecting the materials and chemicals by reading distinctive molecular spectral "signatures."

"Most materials and chemicals have their own unique terahertz spectral signatures," Wanke says. "A terahertz transceiver system would be able to measure, for example, the signature of a gas and determine what it is."

"Atmospheric scientists and radio astronomers have spent years developing terahertz spectral signature databases to identify chemicals in nebula and planetary atmospheres," says Greg Hebner, program manager. "Even though the current devices are washing machine-sized, they are located in a few observatories, and one is even flying on a satellite. To address specific national security problems, we are working on reducing the size, weight, and power requirement as well as expanding the existing spectral databases."

In addition to monitoring for concealed hazardous materials, Mike believes a terahertz system can be used to monitor the air for toxic materials. Using air sampling technology developed at Sandia and other locations, hazardous vapors can be preconcentrated. Shining light from the quantum cascade laser through the concentrated sample provides a direct identification of the vapor. This technology can be used in conjunction with existing mass spectrometer-based systems to reduce false identifications.

"We are very optimistic about working in the terahertz electromagnetic spectrum," Wanke says. "This is an unexplored area and a lot of science can come out of it. We are just beginning to scratch the surface of what THz can do to improve national security."

Chris Burroughs | EurekAlert!
Further information:
http://www.sandia.gov
http://www.sandia.gov/news/resources/releases/2007/terahertz.html

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>