Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sandia develops next generation of screening devices

24.01.2007
System detects hazardous, toxic material in concealed packaging

It might not be science fiction much longer.

Researchers at Sandia National Laboratories are developing the next generation of screening devices that will identify hazardous and toxic materials even if concealed by clothing and packaging materials.

Working in the underutilized terahertz (THz) portion of the electromagnetic spectrum that lies between microwaves and infrared, a team of Labs scientists is harnessing Sandia's strengths in a variety of technical areas with the goal of building a highly integrated miniaturized terahertz transmitter-receiver (transceiver) that could make a number of applications possible.

The project, the Terahertz Microelectronics Transceiver Grand Challenge, is in its second of three years of funding through Sandia's internal Laboratory Directed Research and Development program.

Sandia is a National Nuclear Security Administration (NNSA) laboratory.

"The technology being developed in the Grand Challenge can be used to scan for items such as concealed weapons or materials, explosives, and weapons of mass destruction," says Mike Wanke, principal investigator. "In addition, we believe it will find applications in advanced communication systems and high-resolution radars. However, the infrastructure needed to move the terahertz technology from the laboratory to the field is unavailable right now. We want to develop that infrastructure and invent the necessary technologies."

Wanke says over the past three years, "the terahertz situation has begun to change dramatically, primarily due to the revolutionary development of terahertz quantum cascade lasers."

These tiny lasers are semiconductor sources of terahertz radiation capable of output powers in excess of 100 mW. Previously, such powers could only be obtained by molecular gas lasers occupying cubic meters and weighing more than 100 kg, or free electron lasers weighing tons and occupying entire buildings.

Quantum cascade laser-based systems can be less than the size of a baseball and powered from a nine-volt battery. Sandia has been a leader in developing this new technology and in collaboration with MIT is responsible for several world performance records for the lasers. Also, the Labs and its partners are the only US institutions that have demonstrated the ability to grow the unique semiconductor crystals such that they can be turned into operating terahertz quantum cascade lasers. The crystals are grown by Sandia research scientist John Reno, an expert in molecular beam epitaxy, a method of laying down layers of materials with atomic thicknesses onto substrates.

Sandia researchers spent the first year of the Grand Challenge using Sandia's unique strengths in integrated microelectronics and device physics to develop components that are now being combined to create an integrated THz microelectronic transceiver, a core enabling element.

The team is currently developing the receiver, doing systems tests and exploring packaging requirements. At the end of three years, the researchers expect to have an actual working prototype capable of detecting the materials and chemicals by reading distinctive molecular spectral "signatures."

"Most materials and chemicals have their own unique terahertz spectral signatures," Wanke says. "A terahertz transceiver system would be able to measure, for example, the signature of a gas and determine what it is."

"Atmospheric scientists and radio astronomers have spent years developing terahertz spectral signature databases to identify chemicals in nebula and planetary atmospheres," says Greg Hebner, program manager. "Even though the current devices are washing machine-sized, they are located in a few observatories, and one is even flying on a satellite. To address specific national security problems, we are working on reducing the size, weight, and power requirement as well as expanding the existing spectral databases."

In addition to monitoring for concealed hazardous materials, Mike believes a terahertz system can be used to monitor the air for toxic materials. Using air sampling technology developed at Sandia and other locations, hazardous vapors can be preconcentrated. Shining light from the quantum cascade laser through the concentrated sample provides a direct identification of the vapor. This technology can be used in conjunction with existing mass spectrometer-based systems to reduce false identifications.

"We are very optimistic about working in the terahertz electromagnetic spectrum," Wanke says. "This is an unexplored area and a lot of science can come out of it. We are just beginning to scratch the surface of what THz can do to improve national security."

Chris Burroughs | EurekAlert!
Further information:
http://www.sandia.gov
http://www.sandia.gov/news/resources/releases/2007/terahertz.html

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>