Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A voyage from space to sea with Envisat

11.02.2002


Envisat guarding the planet


Envisat, whose launch is scheduled end of February 2002, will tirelessly sweep the Earth`s surface and atmosphere, using a suite of ten different scientific instruments.

Over a 35-day cycle, the satellite`s orbit will cover the entire planet, and then start all over again. Two thirds of the time it will be over water. Because of the sheer size of the oceanic currents, the complexity of thermal exchanges, and ocean-atmosphere coupling, the ocean is a crucial factor in explaining the way our planet`s climate operates and how it is changing.

Beginning with the first brief American Seasat mission in 1978, satellite observation has created a revolution in our understanding of how the ocean behaves. Since the 1990s, a continuous stream of scientific data has been flowing from ESA`s ERS satellites and the joint French-US Topex/Poseidon altimetry satellite. This first generation is now being succeeded by Envisat`s instruments designed not only to advance science but also to lead to a range of operational applications services.



The data obtained with a radar altimeter, RA-2, will ensure continuity with the original RA system on the ERS satellites. It will also provide a valuable complement to Topex/Poseidon and its follow-on, the small satellite Jason, launched on 7 December 2001. The two systems provide altimetric observation of the ocean from different orbits. A low satellite repetition ensures that Envisat, like the ERS spacecraft before it, obtains excellent spatial resolution, needed to study complex phenomena like eddies and describe the distribution of water mass with precision. Topex/Poseidon and Jason, on the other hand, with a repetitivity of just ten days, will provide better temporal resolution.

CLS, a French company, is handling the operational exploitation of altimetry measurements from both Envisat and Jason. "We will integrate data from these two sources, to get the maximum benefit," explains Philippe Gaspar, Head of satellite oceanography at CLS. "The combinatorial algorithm has been in use since 1998, allowing CLS to offer state-of-the-art data products".

Hydrosphere, atmosphere, ionosphere: a close relationship

The products developed by CLS will be of interest, first and foremost, for scientists who use them as inputs for ocean modelling and forecasting. In conjunction with atmospheric models, this forms a starting point for predicting climate change. "It is now possible to forecast some major events such as El Niño, but smaller-scale phenomena such as the North Atlantic oscillation pose much more of a problem," Gaspar said.
To obtain the best performance from a forecasting model, initial conditions must be described as precisely as possible, and this is where satellite data is indispensable. "Before the advent of satellites, forecasting of this type would have been unthinkable," as Gaspar reminds us.

Radar altimetry measurements are correlated with high-precision orbitographical data from an instrument called "DORIS", and with those of a microwave radiometer, so that errors caused by atmospheric water can be corrected. The use of a dual-frequency altimeter further makes it possible to correct for the distorting effects of the ionosphere. In this way two significant sources of error are eliminated, in the order of 40 to 50 cm for water vapour and 20 to 30 cm for the ionosphere.

The continuity of altimetry data is vital, as Gaspar explains. "The usefulness of the scientific work would be seriously impaired if the service was interrupted. And once commercial applications are on the market, continuity will become absolutely indispensable."

Managing the traffic at sea

In addition to oceanography and climate studies, the radar altimeter has an important contribution to make to marine traffic management. Dispersion of the reflected radar signal gives information on the height of waves, with a precision of ±25 cm, while the advanced synthetic aperture radar (ASAR) determines wave direction. Taken together with information on major currents, this will make it possible to optimise routing of maritime traffic for speed and fuel economy, a substantial boon to international shipping. The ASAR also tracks drifting ice and monitors the pack ice and its limits.

Two other Envisat instruments are designed primarily to study the hydrosphere. MERIS (for Medium Resolution Imaging Spectrometer) is a fifteen-band optical system spanning the visible and near-infrared spectrum, and will be used for ocean colour measurements. The AATSR radiometer covers more of the IR spectrum. It will measure ocean surface temperatures, continuing the work of earlier ATSR systems on the ERS satellites. These two instruments together will have major applications in studies of plankton and fish movements.

As instrument data comes in, Envisat puts it provisionally into its onboard mass-memory devices. Transmission may be to one of the ground stations in Kiruna, Sweden, or Svalbard, Norway or via a high-speed link to the Artemis data relay satellite, which will be positioned in geostationary orbit and forward the data to ESA`s establishment ESRIN, located in Frascati, Italy, for near-real time processing.

The data gathered will be made available to the world scientific community at archiving centres distributed throughout Europe and linked with very high speed leased lines. A data server will be put on line for access via the Internet. Two consortiums have been set up with data processing/commercialisation experts: Sarcom, led by Spot Image, and Emma, by Eurimage, will handle the commercial exploitation of the application products developed from Envisat data.

By concentrating such an array of instruments on a single orbital platform, it becomes possible to integrate the information received in near-real time. This opens exciting opportunities for new products, building on recent progress in our understanding of the mechanisms, which determine the behaviour of the Earth`s oceans and atmosphere. Thanks to a continuous flow of data, these products could revolutionise the management of our Planet and our environment.

Jacques Louet | alphagalileo
Further information:
http://www.esa.int

More articles from Physics and Astronomy:

nachricht Spiral arms: not just in galaxies
30.09.2016 | Max-Planck-Institut für Radioastronomie

nachricht Discovery of an Extragalactic Hot Molecular Core
29.09.2016 | National Astronomical Observatory of Japan

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>