Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Dark Side of Nature: the Crime was Almost Perfect

21.12.2006
VLT Uncovers New Way to Form Black Hole

Nature has again thrown astronomers for a loop. Just when they thought they understood how gamma-ray bursts formed, they have uncovered what appears to be evidence for a new kind of cosmic explosion. These seem to arise when a newly born black hole swallows most of the matter from its doomed parent star.

Gamma-ray bursts (GRBs), the most powerful explosions in the Universe, signal the formation of a new black hole and come in two flavours, long and short ones. In recent years, international efforts have shown that long gamma-ray bursts are linked with the explosive deaths of massive stars (hypernovae; see e.g. ESO PR 16/03).

Last year, observations by different teams - including the GRACE and MISTICI collaborations that use ESO's telescopes - of the afterglows of two short gamma-ray bursts provided the first conclusive evidence that this class of objects most likely originates from the collision of compact objects: neutron stars or black holes (see ESO PR 26/05 and ESO PR 32/05).

The newly found gamma-ray bursts, however, do not fit the picture. They instead seem to share the properties of both the long and short classes.

“Some unknown process must be at play, about which we have presently no clue,” said Massimo Della Valle of the Osservatorio Astrofisico di Arcetri in Firenze, Italy, lead author of one of the reports published in this week’s issue of the journal Nature. “Either it is a new kind of merger which is able to produce long bursts, or a new kind of stellar explosion in which matter can’t escape the black hole.”

One of the mysterious events went bang on 14 June 2006, hence its name, GRB 060614. The gamma-ray burst lasted 102 seconds and belongs clearly to the category of long GRBs. As it happened in a relatively close-by galaxy, located only 1.6 billion light-years away in the constellation Indus, astronomers worldwide eagerly pointed their telescopes toward it to capture the supernova, watching and waiting as if for a jack-in-the-box to spring open.

The MISTICI collaboration used ESO’s Very Large Telescope to follow the burst for 50 days. “Despite our deep monitoring, no rebrightening due to a supernova was seen,” said Gianpiero Tagliaferri from the Observatory of Brera, Italy and member of the team. “If a supernova is present, if should at least be 100 times fainter than any other supernova usually associated with a long burst.”

The burst exploded in a dwarf galaxy that shows moderate signs of star formation. Thus young, massive stars are present and, at the end of its life one of them could have uttered this long, agonising cry before vanishing into a black hole. “Why did it do so in a dark way, with no sign of a supernova?” asked Guido Chincarini, from the University of Milano-Bicocca, Italy, also member of the team. “A possibility is that a massive black hole formed that did not allow any matter to escape. All the material that is usually ejected in a supernova explosion would then fall back and be swallowed.”

The same conclusion was previously reached by another team, who monitored both GRB 060614 and another burst, GRB 060505 (5 May 2006) for 5 and 12 weeks, respectively. For this, they used the ESO VLT and the 1.54-m Danish telescope at La Silla.

GRB 060505 was a faint burst with a duration of 4 seconds, and as such also belongs to the category of long bursts.

For GRB 060505, the astronomers could only see the burst in visible light for one night and then it faded away, while for GRB 060614, they could only follow it for four nights after the burst. Thus, if supernovae were associated with these long-bursts, as one would have expected, they must have been about a hundred times fainter than a normal supernova.

“Although both bursts are long, the remarkable conclusion from our monitoring is that there were no supernovae associated with them,” said Johan Fynbo from the DARK Cosmology Centre at the Niels Bohr Institute of the Copenhagen University in Denmark, who led the study. “It is a bit like not hearing the thunder from a nearby storm when one could see a very long lasting flash.”

For the May burst, the team has obtained deep images in very good observing conditions allowing the exact localisation of the burst in its host galaxy. The host galaxy turns out to be a small spiral galaxy, and the burst occurred in a compact star-forming region in one of the spiral arms of the galaxy. This is strong evidence that the star that made the GRB was massive.

“For the 5 May event, we have evidence that it was due to a massive star that died without making a supernova,” said Fynbo. “We now have to find out what is the fraction of massive stars that die without us noticing, that is, without producing either a gamma-ray burst or a supernova.”

“Whatever the solution to the problem is, it is clear that these new results challenge the commonly accepted scenario, in which long bursts are associated with a bright supernova,” said Daniele Malesani, from the International School for Advanced Studies in Trieste, and now also at the DARK Cosmology Centre. “Our hope is to be able to find more of these unconventional bursts. The chase is on!”

Henri Boffin | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2006/pr-49-06.html

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>