Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Revolutionary new telescope to produce 'sky movies'

Observatory Sciences Ltd, a scientific software consultancy based in Cambridge, England, has completed the design study for the Observatory Control System software for the innovative new Large Synoptic Survey Telescope (LSST), which is set to redefine the expectations of astronomers and scientists for
observational data.

The LSST is a US project headquartered in Arizona that is building a revolutionary new design of telescope that has a field of view 1000 times larger than that of existing large telescopes and a world-class light gathering capability. Every aspect of the project will be record breaking.

The field of view, at ten square degrees, could accommodate fifty full moons. The LSST will image an area of the sky roughly fifty times that of the full moon every 15 seconds, opening a movie-like window on objects that change or move on rapid time scales: supernovae explosions which can be seen halfway across the universe, nearby asteroids which might potentially strike Earth, and faint objects in the outer solar system, far beyond Pluto. Using the light-bending gravity of dark matter, the LSST will chart the history of the expansion of the universe and probe the mysterious nature of dark energy.

The LSST has become possible because we are now able to make large, deeply curved mirrors to an accuracy thought impossible just ten years ago. The telescope will use three mirrors, an 8.4m primary, a 3.4m secondary and a 5.0m tertiary, with the first and last fabricated as a single monolith. This three stage reflection means that LSST is actually so compact that it could sit inside current generation telescope domes.

It has recently been announced that Cerro Pachón, a 2,680m high mountain peak in northern Chile, has been selected as the future site for the Large Synoptic Survey Telescope. The mountain already hosts other large telescopes including the Gemini South 8m reflecting telescope on which Observatory Sciences consultants have worked in the past.

Philip Taylor | alfa
Further information:

More articles from Physics and Astronomy:

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>