Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice takes zeolite design into 21st century using teragrid

15.12.2006
Physicists use supercomputers, disused PCs to catalog mineral designs

A room's design helps define how people interact inside it, and it's much the same in the molecular world. The atomic layout of molecular spaces can provoke very different reactions from chemicals that meet there, in much the way that an intimate bistro and a bustling cafeteria might evoke different interactions among dinners.

One class of substances that chemists often tap for these spatially unique properties are zeolites, silicate minerals with a porous, Swiss-cheese-like structure. For decades, chemists have relied on zeolites to catalyze chemical reactions on an industrial scale. They are used to make everything from gasoline and asphalt to laundry detergent and aquarium filters.

So useful are zeolites that scientists have sought for decades to improve upon Mother Nature's ability to make them. In the past 50 years, the catalog of naturally occurring zeolites – there are about 50 of them – has been bolstered to approximately 180 with the addition of synthetic varieties, minerals whose architecture was found to be, much like a building's, suitable for a particular purpose.

Today, Rice University physicist Michael Deem is taking zeolite design into the 21st Century, using a combination of supercomputers at the University of Texas at Austin and disused computing cycles from more than 4,300 idling desktop PCs at Purdue University to painstakingly calculate many conceivable atomic formulations for zeolites.

Deem's zeolite database contained 3.4 million structures in early December, and it's still growing. By studying the catalog, scientists might find structures that are more efficient, either in terms of energy inputs or in waste byproducts.

"We're working with a major oil company to look at the structures in hopes of finding new catalysts for chemical and petrochemical applications," said Deem, the John W. Cox Professor in Biochemical and Genetic Engineering and professor of physics and astronomy.

In the current project, Deem and former postdoctoral researcher David Earl, now an assistant professor of chemistry at the University of Pittsburgh, worked with experts from the UT's Texas Advanced Computing Center and Purdue's Rosen Center for Advanced Computing to run computer simulations on multiple TeraGrid supercomputing systems, including systems at TACC, Purdue, Argonne National Labs, National Center for Supercomputing Applications and San Diego Supercomputing Center. The NSF-funded TeraGrid is the world's largest, most comprehensive distributed cyberinfrastructure for open scientific research.

Deem and Earl were able to harness the distributed, heterogeneous computing resources on the TeraGrid network into a single virtual environment for their simulations.

"This project could not have been accomplished in a one- to three-year time frame without the TeraGrid," Deem said.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu
http://www.mwdeem.rice.edu/zefsaII/

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>