Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Rise of a Giant

12.12.2006
ESO Council Gives Green Light to Detailed Study of the European Extremely Large Telescope

European astronomy has received a tremendous boost with the decision from ESO's governing body to proceed with detailed studies for the European Extremely Large Telescope. This study, with a budget of 57 million euro, will make it possible to start, in three years time, the construction of an optical/infrared telescope with a diameter around 40m that will revolutionise ground-based astronomy. The chosen design is based on a revolutionary concept specially developed for a telescope of this size.

"The decision by the ESO Council to go ahead with the design study for an European Extremely Large Telescope is a very exciting one for European astronomy,", said Richard Wade, President of the ESO Council.

"Today is a great day because the ESO Council has authorised us to go forward with the final design of the next flagship telescope of ESO,", says Catherine Cesarsky, ESO's Director General.

Since the end of last year, ESO has been working together with its user community of European astronomers and astrophysicists to define the new giant telescope needed by the middle of the next decade [1]. More than one hundred astronomers from all European countries have been involved throughout 2006, helping the ESO Project Offices to produce a novel concept, in which performance, cost, schedule and risk were carefully evaluated.

This fast pace has also been possible thanks to early conceptual studies in Europe (such as the ESO OWL and the EURO-50 studies) and research and development done in collaboration with a large number of European institutes and high-tech industries to develop critical enabling technologies within the framework of the EU FP6 programme and with significant contributions from all partners.

Provisionally dubbed E-ELT for the European Extremely Large Telescope, ESO's innovative concept was presented in detail two weeks ago to more than 250 European astronomers at a conference in Marseille. Their enthusiastic welcome paved the way for the decision by the ESO Council to move to the crucial next phase: detailed design of the full facility.

"At the end of the three year Final Design Study, we will know exactly how everything is going to be built including a detailed costing," said Cesarsky. "We then hope to start construction and have it ready by 2017, when we can install instruments and use it!"

The present concept, estimated to cost around 800 million euro, features as a baseline a telescope with a 42-m diameter mirror, and is revolutionary.

"A telescope of this size could not be built without a complete rethinking of the way we make telescopes," said Catherine Cesarsky.

The primary 42-m diameter mirror is composed of 906 hexagonal segments, each 1.45 m in size, while the secondary mirror is as large as 6 m in diameter. In order to overcome the fuzziness of stellar images due to atmospheric turbulence the telescope needs to incorporate adaptive mirrors into its optics [2]. A tertiary mirror, 4.2 m in diameter, relays the light to the adaptive optics system, composed of two mirrors: a 2.5-m mirror supported by 5000 or more actuators able to distort its own shape a thousand times per second, and one 2.7 m in diameter that allows for the final image corrections. This five mirror approach results in an exceptional image quality, with no significant aberrations in the field of view.

The site of the E-ELT is not yet fixed as studies are still undergoing with a plan to make a decision by 2008.

Extremely Large Telescopes are considered worldwide as one of the highest priorities in ground-based astronomy. They will vastly advance astrophysical knowledge, allowing detailed studies of subjects including planets around other stars, the first objects in the Universe, super-massive Black Holes, and the nature and distribution of the dark matter and dark energy which dominate the Universe.

With a diameter of 42 m and its adaptive optics concept, the E-ELT will be more than one hundred times more sensitive than the present-day largest optical telescopes, such as the 10-m Keck telescopes or the 8.2-m VLT telescopes.

"This is really the beginning of a new era for optical and infrared astronomy," said Catherine Cesarsky.

Henri Boffin | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2006/pr-46-06.html

More articles from Physics and Astronomy:

nachricht First direct observation and measurement of ultra-fast moving vortices in superconductors
20.07.2017 | The Hebrew University of Jerusalem

nachricht Manipulating Electron Spins Without Loss of Information
19.07.2017 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>