Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catching the wave -- Researchers measure very short laser pulses

04.12.2006
Scientists have perfected a technique for very accurately measuring and controlling the electromagnetic waves within some of the shortest laser pulses ever made, says new research published today. Being able to fully understand and control these laser pulses represents an important step towards using them to track and manipulate electrons in leading-edge research at the sub-atomic level.

The study, published in Nature Physics, focused on extremely short laser pulses, less than 10 femtoseconds long - a femtosecond is one million-billionth of a second. These laser pulses can allow scientists to move and control the electrons in atoms and molecules, and to understand, for example, how molecules are formed. To achieve this reliably, the pulse of electromagnetic waves emitted from the laser must be controlled and measured with a precision which, until now, has been very hard to achieve.

The team of physicists from Imperial College London attained an unprecedented level of accurate measurement by firing the femtosecond laser pulse into a sample of gas, which responds by emitting an x-ray pulse which is even shorter in duration - up to 10 times shorter than the original laser pulse. The researchers found that the spectrum of the x-ray pulse has encoded within it all the information necessary to precisely reconstruct the waveform of the original laser pulse. Through careful measurements and some 'intelligent' software designed specifically for this purpose, the researchers were therefore able, for the first time, to measure the waveform of individual femtosecond pulses.

Dr John Tisch, one of the Imperial research team, said: "This measurement technique is so accurate that we can determine the position of a peak in the pulse of electromagnetic waves from the laser with a precision of a mere 0.05 femtoseconds - in other words, 50 attoseconds. Also, the measurement can be made on individual pulses rather than by looking at the average properties of many pulses, so this is an important step forwards."

Dr Tisch explains that not only will this new technique lead to a greater ability to use short laser pulses for accurate sub-atomic level research, but it also sheds new light on the extremely short x-ray pulses emitted in response: "The x-ray pulses we used in the measurement process of our research are of great interest in their own right," he says. "They are on the attosecond timescale, which is even shorter than a femtosecond - just one billion-billionth of a second. They are a new tool for scientists to probe even faster motion than the femtosecond pulses that triggered them."

The research team have recently received a four-year £2.5 million grant from the EPSRC to take this research to the next stage. Professor Jonathan Marangos explains: "Now we've perfected this technique, we are going to look into using our accurate measurements and control of these lasers to manipulate electrons and control quantum processes."

Laura Gallagher | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Physics and Astronomy:

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

nachricht Tracking a solar eruption through the solar system
16.08.2017 | American Geophysical Union

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>