Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strontium atomic clock demonstrates super-fine 'ticks'

01.12.2006
JILA advances quest for better time-keeping at optical frequencies

Using an ultra-stable laser to manipulate strontium atoms trapped in a "lattice" made of light, scientists at JILA have demonstrated the capability to produce the most precise "ticks" ever recorded in an optical atomic clock—techniques that may be useful in time keeping, precision measurements of high frequencies, and quantum computers using neutral atoms as bits of information.

The JILA strontium lattice design, described in the December 1 issue of Science,* is a leading candidate for next-generation atomic clocks that operate at optical frequencies, which are much higher than the microwaves used in today's standard atomic clocks and thus divide time into smaller, more precise units. JILA is a joint institution of the Commerce Department's National Institute of Standards and Technology (NIST) and the University of Colorado at Boulder (CU-Boulder).

The JILA group, led by NIST Fellow Jun Ye, achieved the highest "resonance quality factor"—indicating strong, stable signals when a very specific frequency of laser light excites the atoms—ever recorded in coherent spectroscopy, or studies of interactions between matter and light. "We can define the center, or peak, of this resonance with a precision comparable to measuring the distance from the Earth to the Sun with an uncertainty the size of a human hair," says first author Martin Boyd, a CU-Boulder graduate student. This enabled observation of very subtle sublevels of the atoms' electronic energy states created by the magnetic "spin" of their nuclei.

The new strontium clock is among the best optical atomic clocks described to date in the published literature. It is currently less accurate overall than NIST's mercury ion (charged atom) clock (see www.nist.gov/public_affairs/releases/mercury_atomic_clock.htm). Although the strontium clock operates at a lower optical frequency, with fewer than half as many ticks per time period, the JILA clock produces much stronger signals, and its "resonant" frequency—the exact wavelength of laser light that causes the atoms to switch back and forth between energy levels—was measured with higher resolution than in the mercury clock. The result is a frequency "ruler" with finer hash marks.

Improved time and frequency standards have many applications. For instance, ultra-precise clocks can be used to improve synchronization in navigation and positioning systems, telecommunications networks, and wireless and deep-space communications. Better frequency standards can be used to improve probes of magnetic and gravitational fields for security and medical applications, and to measure whether "fundamental constants" used in scientific research might be varying over time—a question that has enormous implications for understanding the origins and ultimate fate of the universe.

One of JILA's major innovations enabling the new level of precision is a customized probe laser that is highly resistant to "noise" caused by vibration and gravity, based on a compact, inexpensive design originally developed by 2005 Nobel Laureate Jan Hall, a Fellow and senior research associate at JILA (see www.nist.gov/public_affairs/techbeat/tb2005_0726.htm#JILA).

The laser can be locked reliably on a single atomic frequency, 430 trillion cycles per second (terahertz) with a "linewidth" or uncertainty of under 2 Hertz, 100 times narrower (or more precise) than the Ye group's previously published measurements of the strontium lattice clock.

The lattice consists of a single line of 100 pancake-shaped wells — created by an intense near-infrared laser beam — each containing about 100 atoms of the heavy metal strontium. The lattice is loaded by first slowing down the atoms with blue laser light and then using red laser light to further cool the atoms so that they can be captured. Scientists detect the atoms' "ticks" (430 trillion per second) by bathing them in very stable red light at slightly different frequencies until they find the exact frequency that the atoms absorb best.

Optical lattices constrain atom motion and thereby reduce systematic errors that need to be managed in today’s standard atomic clocks, such as NIST-F1, that use moving balls of cold atoms. Lattices containing dozens of atoms also produce stronger signals than clocks relying on a single ion, such as mercury. In addition, the JILA clock ensures signal stability—a particular challenge with large numbers of atoms—by using a carefully calibrated lattice design to separate control of internal and external atom motions. Similar work is under way at a number of standards labs across the globe, including the NIST ytterbium atoms work.

The JILA work may enable quantum information to be processed and stored in the nuclear spins of neutral atoms, and enable logic operations to proceed for longer periods of time. The enhanced measurement precision also could make it easier for scientists to use optical lattices to engineer condensed matter systems for massively parallel quantum measurements.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov
http://www.nist.gov/public_affairs/quantum/quantum_info_index.html

More articles from Physics and Astronomy:

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

nachricht Tracking a solar eruption through the solar system
16.08.2017 | American Geophysical Union

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>