Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Strontium atomic clock demonstrates super-fine 'ticks'

JILA advances quest for better time-keeping at optical frequencies

Using an ultra-stable laser to manipulate strontium atoms trapped in a "lattice" made of light, scientists at JILA have demonstrated the capability to produce the most precise "ticks" ever recorded in an optical atomic clock—techniques that may be useful in time keeping, precision measurements of high frequencies, and quantum computers using neutral atoms as bits of information.

The JILA strontium lattice design, described in the December 1 issue of Science,* is a leading candidate for next-generation atomic clocks that operate at optical frequencies, which are much higher than the microwaves used in today's standard atomic clocks and thus divide time into smaller, more precise units. JILA is a joint institution of the Commerce Department's National Institute of Standards and Technology (NIST) and the University of Colorado at Boulder (CU-Boulder).

The JILA group, led by NIST Fellow Jun Ye, achieved the highest "resonance quality factor"—indicating strong, stable signals when a very specific frequency of laser light excites the atoms—ever recorded in coherent spectroscopy, or studies of interactions between matter and light. "We can define the center, or peak, of this resonance with a precision comparable to measuring the distance from the Earth to the Sun with an uncertainty the size of a human hair," says first author Martin Boyd, a CU-Boulder graduate student. This enabled observation of very subtle sublevels of the atoms' electronic energy states created by the magnetic "spin" of their nuclei.

The new strontium clock is among the best optical atomic clocks described to date in the published literature. It is currently less accurate overall than NIST's mercury ion (charged atom) clock (see Although the strontium clock operates at a lower optical frequency, with fewer than half as many ticks per time period, the JILA clock produces much stronger signals, and its "resonant" frequency—the exact wavelength of laser light that causes the atoms to switch back and forth between energy levels—was measured with higher resolution than in the mercury clock. The result is a frequency "ruler" with finer hash marks.

Improved time and frequency standards have many applications. For instance, ultra-precise clocks can be used to improve synchronization in navigation and positioning systems, telecommunications networks, and wireless and deep-space communications. Better frequency standards can be used to improve probes of magnetic and gravitational fields for security and medical applications, and to measure whether "fundamental constants" used in scientific research might be varying over time—a question that has enormous implications for understanding the origins and ultimate fate of the universe.

One of JILA's major innovations enabling the new level of precision is a customized probe laser that is highly resistant to "noise" caused by vibration and gravity, based on a compact, inexpensive design originally developed by 2005 Nobel Laureate Jan Hall, a Fellow and senior research associate at JILA (see

The laser can be locked reliably on a single atomic frequency, 430 trillion cycles per second (terahertz) with a "linewidth" or uncertainty of under 2 Hertz, 100 times narrower (or more precise) than the Ye group's previously published measurements of the strontium lattice clock.

The lattice consists of a single line of 100 pancake-shaped wells — created by an intense near-infrared laser beam — each containing about 100 atoms of the heavy metal strontium. The lattice is loaded by first slowing down the atoms with blue laser light and then using red laser light to further cool the atoms so that they can be captured. Scientists detect the atoms' "ticks" (430 trillion per second) by bathing them in very stable red light at slightly different frequencies until they find the exact frequency that the atoms absorb best.

Optical lattices constrain atom motion and thereby reduce systematic errors that need to be managed in today’s standard atomic clocks, such as NIST-F1, that use moving balls of cold atoms. Lattices containing dozens of atoms also produce stronger signals than clocks relying on a single ion, such as mercury. In addition, the JILA clock ensures signal stability—a particular challenge with large numbers of atoms—by using a carefully calibrated lattice design to separate control of internal and external atom motions. Similar work is under way at a number of standards labs across the globe, including the NIST ytterbium atoms work.

The JILA work may enable quantum information to be processed and stored in the nuclear spins of neutral atoms, and enable logic operations to proceed for longer periods of time. The enhanced measurement precision also could make it easier for scientists to use optical lattices to engineer condensed matter systems for massively parallel quantum measurements.

Laura Ost | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>