Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ready to control Columbus

23.11.2006
ESA's Columbus Control Centre - Europe's 'Houston' - is in operation now for Astrolab while readying for the European Columbus laboratory in 2007.

Inaugurated in 2004 under contract from ESA, the Columbus Control Centre, located at the German Aerospace Center (DLR) facility in Oberpfaffenhofen, Germany, joins the ranks of International Space Station (ISS) control centres including Houston and Moscow.

Under the call sign 'Munich', the Columbus Control Centre will, from 2007, be responsible for systems onboard the orbiting Columbus laboratory and for European science activities on board the ISS. The centre is already building operational expertise during ESA's ongoing Astrolab mission.

In the last quarter of 2007, the Columbus laboratory, Europe's cornerstone contribution to the International Space Station, will be launched into space and attached to the ISS. The 4.5-metre diameter cylindrical module is equipped internally with four advanced science facilities and externally with two unpressurised exposed payloads, which together will enable Earth-based researchers to conduct experiments in biology, human physiology, materials science, fluid physics and a range of other disciplines, all in the weightlessness and space conditions of orbit.

Columbus brings new responsibilities

"Columbus will be the first time we not only have coordination responsibility for the science experiments but also permanent system-wide responsibility for the complete module, comprising services such as air and temperature regulation and power distribution. Once Columbus is in orbit, the control room will be manned, if necessary, twenty-four hours per day," says Dieter Sabath, DLR project manager at the Columbus Control Centre.

Furthermore, a Europe-wide ground support network of User Support and Operations Centres (USOCs) is managed from the Columbus Control Centre, supplying voice, video and data services to remotely located scientists and specialists who receive scientific results from experiments on board the lab.

Two large mission control rooms housed within DLR's German Space Operations Centre (GSOC), have been remodelled for the needs of the pre-Columbus missions, simulations and Columbus continuous operations.

"The Columbus Control Centre now has about 80 engineers, and in 2005 and 2006 we saw a great deal of training, simulations and practices for the launch of Columbus. It's a real cooperative success for ESA, DLR and our industry partners," says Thomas Kuch, head of mission operations at GSOC.

Functional specialisation inside control room

The main Columbus control room houses a series of large display screens on one wall, with rows of command consoles and workstations lined up beneath. The functions of the Columbus Flight Control team comprise:

Columbus Flight Director, directing the team and interfacing with US and Russian ISS Flight Directors

Systems, responsible for the optimum exploitation of the Columbus technical systems

Operations Coordination, overseeing payload coordination and interfacing also with the remotely located user centres

Communications, overseeing the receipt and transmission of science results and scheduling

Data Management System, responsible for the on board data system, the 'brain' of Columbus

Eurocom, communicating with the astronauts on board ISS and in Columbus

COP (Columbus Operations Planner), responsible for the ongoing planning of European activities

Overall direction of the flight control teams is provided by ESA Operations Managers under the leadership of ESA astronaut Reinhold Ewald.

This team is responsible for ensuring the flight readiness certification of the ground segment and operations as well as for providing direction to the flight control teams in situations not covered by the flight rules, plan and procedures.

The main control room is backed up by a second, smaller - but functionally identical - control room, which provides redundancy as well as spare capacity for training controllers, running simulations and testing software and procedures.

Controllers maintain real-time communications worldwide

Engineers on duty at the Columbus centre are in real-time communication via voice and video with ISS control centres in Russia (Moscow) and the US (Houston and Huntsville), as well as with European USOCs (User Support and Operations Centres).

These 10 centres are located throughout Europe and provide the data interface for research scientists to operate the Columbus research facilities and manage science results returned by their experiments onboard Columbus.

USOCs in France, Denmark, Italy, Germany and Norway are already active in receiving science results during the current Astrolab mission.

The Columbus Control Centre is also connected to ESA's Crew Medical Support Office (CMSO), a health operations centre staffed by doctors and biomedical engineers and located at ESA's European Astronaut Centre, Cologne, Germany. The CMSO provides European astronauts with medical advice and monitoring while onboard the ISS.

"All our communications go via leased fibre optic lines. Our commands are actually transmitted to the ISS via mission control in Houston, then to the ISS Payload Operations Centre in Huntsville, Alabama, then to the NASA ground stations in New Mexico and up to the ISS," says Sabath, adding, "All communications via external lines are encrypted for security reasons."

He also explains that the working language for all ISS controllers is English, but that regional accents (not least including US regional accents!) and the 2- to 3-second delay on the voice communications loop sometimes make understanding difficult. "It's tough for new controllers to listen in and understand, but they usually get pretty good after a few weeks. For communication with the Russian flight controllers, ESA maintains a team of expert interpreters on duty in Moscow who understand Russian space jargon," he says.

ESA's Columbus Control Centre already in action

The centre is already building expertise during ESA's ongoing Astrolab mission, Thomas Reiter's 6-month, long-duration science mission on the ISS that started in July 2006. Ewald, ESA's manager of the Columbus Control Centre, is also an experienced ESA astronaut.

"Reiter's Astrolab science programme, which is ESA's first long-duration mission on the ISS, consists of experiments in physics, human physiology and biology, and technology and educational demonstrations as well as industrial experiments," says Ewald.

"ESA and the contractor operations team running the mission operations are gaining valuable first-hand experience. We will be able to take our place in the ISS partnership much easier once Columbus has arrived."

Ewald and a team of specialists are on console 10 hours each day, starting and ending around the daily morning and evening planning conference (DPC) between US, European and Russian controllers and ISS astronauts (the ISS follows GMT time). Consoles are staffed longer when required for special activities, such as during Reiter's successful EVA (extra vehicular activity) in August, or during Shuttle and Soyuz docked periods.

The centre's controllers are already looking forward to an intense period in December 2006, when NASA Shuttle mission STS-116 will deliver the P5 Truss section to the ISS, during which ESA astronaut Christer Fuglesang, from Sweden, is scheduled to perform two EVAs. The same mission will bring Thomas Reiter back home, and then the Columbus Control Centre will hopefully have time for a short Christmas break.

Next year, activity for Columbus and on the ISS will increase significantly. Two more ESA astronauts are scheduled to take part in highly complex ISS assembly missions to install the European-built Node 2 in the summer and, finally, to bring the European Columbus laboratory itself to the ISS in October.

Reinhold Ewald | alfa
Further information:
http://www.esa.int/SPECIALS/Astrolab/SEM7EBANMUE_0.html

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>