Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ready to control Columbus

23.11.2006
ESA's Columbus Control Centre - Europe's 'Houston' - is in operation now for Astrolab while readying for the European Columbus laboratory in 2007.

Inaugurated in 2004 under contract from ESA, the Columbus Control Centre, located at the German Aerospace Center (DLR) facility in Oberpfaffenhofen, Germany, joins the ranks of International Space Station (ISS) control centres including Houston and Moscow.

Under the call sign 'Munich', the Columbus Control Centre will, from 2007, be responsible for systems onboard the orbiting Columbus laboratory and for European science activities on board the ISS. The centre is already building operational expertise during ESA's ongoing Astrolab mission.

In the last quarter of 2007, the Columbus laboratory, Europe's cornerstone contribution to the International Space Station, will be launched into space and attached to the ISS. The 4.5-metre diameter cylindrical module is equipped internally with four advanced science facilities and externally with two unpressurised exposed payloads, which together will enable Earth-based researchers to conduct experiments in biology, human physiology, materials science, fluid physics and a range of other disciplines, all in the weightlessness and space conditions of orbit.

Columbus brings new responsibilities

"Columbus will be the first time we not only have coordination responsibility for the science experiments but also permanent system-wide responsibility for the complete module, comprising services such as air and temperature regulation and power distribution. Once Columbus is in orbit, the control room will be manned, if necessary, twenty-four hours per day," says Dieter Sabath, DLR project manager at the Columbus Control Centre.

Furthermore, a Europe-wide ground support network of User Support and Operations Centres (USOCs) is managed from the Columbus Control Centre, supplying voice, video and data services to remotely located scientists and specialists who receive scientific results from experiments on board the lab.

Two large mission control rooms housed within DLR's German Space Operations Centre (GSOC), have been remodelled for the needs of the pre-Columbus missions, simulations and Columbus continuous operations.

"The Columbus Control Centre now has about 80 engineers, and in 2005 and 2006 we saw a great deal of training, simulations and practices for the launch of Columbus. It's a real cooperative success for ESA, DLR and our industry partners," says Thomas Kuch, head of mission operations at GSOC.

Functional specialisation inside control room

The main Columbus control room houses a series of large display screens on one wall, with rows of command consoles and workstations lined up beneath. The functions of the Columbus Flight Control team comprise:

Columbus Flight Director, directing the team and interfacing with US and Russian ISS Flight Directors

Systems, responsible for the optimum exploitation of the Columbus technical systems

Operations Coordination, overseeing payload coordination and interfacing also with the remotely located user centres

Communications, overseeing the receipt and transmission of science results and scheduling

Data Management System, responsible for the on board data system, the 'brain' of Columbus

Eurocom, communicating with the astronauts on board ISS and in Columbus

COP (Columbus Operations Planner), responsible for the ongoing planning of European activities

Overall direction of the flight control teams is provided by ESA Operations Managers under the leadership of ESA astronaut Reinhold Ewald.

This team is responsible for ensuring the flight readiness certification of the ground segment and operations as well as for providing direction to the flight control teams in situations not covered by the flight rules, plan and procedures.

The main control room is backed up by a second, smaller - but functionally identical - control room, which provides redundancy as well as spare capacity for training controllers, running simulations and testing software and procedures.

Controllers maintain real-time communications worldwide

Engineers on duty at the Columbus centre are in real-time communication via voice and video with ISS control centres in Russia (Moscow) and the US (Houston and Huntsville), as well as with European USOCs (User Support and Operations Centres).

These 10 centres are located throughout Europe and provide the data interface for research scientists to operate the Columbus research facilities and manage science results returned by their experiments onboard Columbus.

USOCs in France, Denmark, Italy, Germany and Norway are already active in receiving science results during the current Astrolab mission.

The Columbus Control Centre is also connected to ESA's Crew Medical Support Office (CMSO), a health operations centre staffed by doctors and biomedical engineers and located at ESA's European Astronaut Centre, Cologne, Germany. The CMSO provides European astronauts with medical advice and monitoring while onboard the ISS.

"All our communications go via leased fibre optic lines. Our commands are actually transmitted to the ISS via mission control in Houston, then to the ISS Payload Operations Centre in Huntsville, Alabama, then to the NASA ground stations in New Mexico and up to the ISS," says Sabath, adding, "All communications via external lines are encrypted for security reasons."

He also explains that the working language for all ISS controllers is English, but that regional accents (not least including US regional accents!) and the 2- to 3-second delay on the voice communications loop sometimes make understanding difficult. "It's tough for new controllers to listen in and understand, but they usually get pretty good after a few weeks. For communication with the Russian flight controllers, ESA maintains a team of expert interpreters on duty in Moscow who understand Russian space jargon," he says.

ESA's Columbus Control Centre already in action

The centre is already building expertise during ESA's ongoing Astrolab mission, Thomas Reiter's 6-month, long-duration science mission on the ISS that started in July 2006. Ewald, ESA's manager of the Columbus Control Centre, is also an experienced ESA astronaut.

"Reiter's Astrolab science programme, which is ESA's first long-duration mission on the ISS, consists of experiments in physics, human physiology and biology, and technology and educational demonstrations as well as industrial experiments," says Ewald.

"ESA and the contractor operations team running the mission operations are gaining valuable first-hand experience. We will be able to take our place in the ISS partnership much easier once Columbus has arrived."

Ewald and a team of specialists are on console 10 hours each day, starting and ending around the daily morning and evening planning conference (DPC) between US, European and Russian controllers and ISS astronauts (the ISS follows GMT time). Consoles are staffed longer when required for special activities, such as during Reiter's successful EVA (extra vehicular activity) in August, or during Shuttle and Soyuz docked periods.

The centre's controllers are already looking forward to an intense period in December 2006, when NASA Shuttle mission STS-116 will deliver the P5 Truss section to the ISS, during which ESA astronaut Christer Fuglesang, from Sweden, is scheduled to perform two EVAs. The same mission will bring Thomas Reiter back home, and then the Columbus Control Centre will hopefully have time for a short Christmas break.

Next year, activity for Columbus and on the ISS will increase significantly. Two more ESA astronauts are scheduled to take part in highly complex ISS assembly missions to install the European-built Node 2 in the summer and, finally, to bring the European Columbus laboratory itself to the ISS in October.

Reinhold Ewald | alfa
Further information:
http://www.esa.int/SPECIALS/Astrolab/SEM7EBANMUE_0.html

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>