Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Dark energy existed in infant universe

Using NASA's Hubble Space Telescope, researchers have discovered that dark energy, a mysterious repulsive force that makes the universe expand at an ever-faster rate, is not new but rather has been present in the universe for most of its 13-billion-year history.

A team led by Adam Riess, a professor in The Johns Hopkins University's Henry A. Rowland Department of Physics and Astronomy and a Space Telescope Institute researcher, found that dark energy was already accelerating the expansion of the universe at least as long as 9 billion years ago. This picture of dark energy would be consistent with Albert Einstein's prediction, nearly a century ago, that a repulsive form of gravity emanates from empty space.

The team will announce these findings in a media teleconference at NASA headquarters in Washington at 1 p.m. EST on Thursday, Nov. 6. (For logistics, see below.) The findings also will be published in the Feb. 10, 2007, issue of Astrophysical Journal.

"Although dark energy accounts for more than 70 percent of the energy of the universe, we know very little about it, so each clue is precious," said Riess, who in 1998 led one of the first studies to reveal the presence of dark energy. "Our latest clue is that the stuff we call dark energy was present as long as 9 billion years ago, when it was starting to make its presence felt."

Hubble's new evidence is important, because it will help astrophysicists start ruling out competing explanations that predict that the strength of dark energy changes over time, Riess said.

In addition, the researchers found that the exploding stars, or supernovae, used as markers to measure the expansion of space today look remarkably similar to those which exploded 9 billion years ago and are just now seen by Hubble. This is an important finding, say researchers, because it gives added credibility to the use of these supernovae as tools for tracking the cosmic expansion over most of the universe's lifetime.

To study the behavior of dark energy long ago, Hubble had to peer far across the universe and back into time to detect ancient supernovae, which can be used to trace the universe's expansion and determine its expansion rate at various times. The method, Riess said, is analogous to watching fireflies on a summer night. Because all fireflies glow with about the same brightness, you can judge how they are distributed throughout the backyard by their comparative apparent faintness or brightness, which depends on their distance from you.

Only Hubble can measure these supernovae because they are too distant, and therefore too faint, to be studied by the largest ground-based telescopes.

Albert Einstein first conceived of the notion of a repulsive force in space in his attempt to explain a balance the universe against the inward pull of its own gravity. If such an opposing force did not exist, he reasoned, gravity would ultimately cause the universe to implode.

But Einstein eventually rejected his own so-called "cosmological constant" idea and it remained a curious hypothesis until 1998, when Riess and the members of the High-Z Supernova Team and the Supernova Cosmology Project used ground-based telescopes and Hubble to first detect the acceleration of the expansion of space from observations of distant supernovae. Astrophysicists came to the realization that Einstein may have been right after all, that there really was a repulsive form of gravity in space. It soon after was dubbed "dark energy."

Over the past eight years, astrophysicists have been trying to uncover two of dark energy's most fundamental properties: its strength and its permanence. The new observations reveal that dark energy was present and obstructing the gravitational pull of the matter in the universe even before it began to win this cosmic "tug of war."

Hubble observations of the most distant supernovae known, reported in 2004 by Riess and colleagues, revealed that the early universe was dominated by matter whose gravity was slowing down the universe's expansion rate, like a ball rolling up a slight incline. The observations also confirmed that the expansion rate of the cosmos began speeding up about 5 billion to 6 billion years ago, like a roller coaster zooming down a track. That is when astronomers believe that dark energy's repulsive force overtook gravity's attractive grip.

The latest results are based on an analysis of the 24 most distant supernovae known, most found within the last two years.

By measuring the universe's relative size over time, astrophysicists have tracked the universe's growth spurts, much as a parent may witness the growth spurts of a child by tracking changes in height on a doorframe. Distant supernovae provide the doorframe markings read by Hubble.

"After we subtract the gravity from the known matter in the universe, we can see the dark energy pushing to get out," said the University of Western Kentucky's Lou Strolger, a supernova hunter on the Riess team.

Further observations are presently underway with Hubble by Riess and his team which should continue to offer new clues to the nature of dark energy.

Lisa DeNike | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>