Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dark energy existed in infant universe

20.11.2006
Using NASA's Hubble Space Telescope, researchers have discovered that dark energy, a mysterious repulsive force that makes the universe expand at an ever-faster rate, is not new but rather has been present in the universe for most of its 13-billion-year history.

A team led by Adam Riess, a professor in The Johns Hopkins University's Henry A. Rowland Department of Physics and Astronomy and a Space Telescope Institute researcher, found that dark energy was already accelerating the expansion of the universe at least as long as 9 billion years ago. This picture of dark energy would be consistent with Albert Einstein's prediction, nearly a century ago, that a repulsive form of gravity emanates from empty space.

The team will announce these findings in a media teleconference at NASA headquarters in Washington at 1 p.m. EST on Thursday, Nov. 6. (For logistics, see below.) The findings also will be published in the Feb. 10, 2007, issue of Astrophysical Journal.

"Although dark energy accounts for more than 70 percent of the energy of the universe, we know very little about it, so each clue is precious," said Riess, who in 1998 led one of the first studies to reveal the presence of dark energy. "Our latest clue is that the stuff we call dark energy was present as long as 9 billion years ago, when it was starting to make its presence felt."

Hubble's new evidence is important, because it will help astrophysicists start ruling out competing explanations that predict that the strength of dark energy changes over time, Riess said.

In addition, the researchers found that the exploding stars, or supernovae, used as markers to measure the expansion of space today look remarkably similar to those which exploded 9 billion years ago and are just now seen by Hubble. This is an important finding, say researchers, because it gives added credibility to the use of these supernovae as tools for tracking the cosmic expansion over most of the universe's lifetime.

To study the behavior of dark energy long ago, Hubble had to peer far across the universe and back into time to detect ancient supernovae, which can be used to trace the universe's expansion and determine its expansion rate at various times. The method, Riess said, is analogous to watching fireflies on a summer night. Because all fireflies glow with about the same brightness, you can judge how they are distributed throughout the backyard by their comparative apparent faintness or brightness, which depends on their distance from you.

Only Hubble can measure these supernovae because they are too distant, and therefore too faint, to be studied by the largest ground-based telescopes.

Albert Einstein first conceived of the notion of a repulsive force in space in his attempt to explain a balance the universe against the inward pull of its own gravity. If such an opposing force did not exist, he reasoned, gravity would ultimately cause the universe to implode.

But Einstein eventually rejected his own so-called "cosmological constant" idea and it remained a curious hypothesis until 1998, when Riess and the members of the High-Z Supernova Team and the Supernova Cosmology Project used ground-based telescopes and Hubble to first detect the acceleration of the expansion of space from observations of distant supernovae. Astrophysicists came to the realization that Einstein may have been right after all, that there really was a repulsive form of gravity in space. It soon after was dubbed "dark energy."

Over the past eight years, astrophysicists have been trying to uncover two of dark energy's most fundamental properties: its strength and its permanence. The new observations reveal that dark energy was present and obstructing the gravitational pull of the matter in the universe even before it began to win this cosmic "tug of war."

Hubble observations of the most distant supernovae known, reported in 2004 by Riess and colleagues, revealed that the early universe was dominated by matter whose gravity was slowing down the universe's expansion rate, like a ball rolling up a slight incline. The observations also confirmed that the expansion rate of the cosmos began speeding up about 5 billion to 6 billion years ago, like a roller coaster zooming down a track. That is when astronomers believe that dark energy's repulsive force overtook gravity's attractive grip.

The latest results are based on an analysis of the 24 most distant supernovae known, most found within the last two years.

By measuring the universe's relative size over time, astrophysicists have tracked the universe's growth spurts, much as a parent may witness the growth spurts of a child by tracking changes in height on a doorframe. Distant supernovae provide the doorframe markings read by Hubble.

"After we subtract the gravity from the known matter in the universe, we can see the dark energy pushing to get out," said the University of Western Kentucky's Lou Strolger, a supernova hunter on the Riess team.

Further observations are presently underway with Hubble by Riess and his team which should continue to offer new clues to the nature of dark energy.

Lisa DeNike | EurekAlert!
Further information:
http://www.nasa.gov/ntv
http://www.nasa.gov/newsaudio

More articles from Physics and Astronomy:

nachricht One-way roads for spin currents
23.05.2018 | Singapore University of Technology and Design

nachricht Tunable diamond string may hold key to quantum memory
23.05.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>