Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early Earth haze may have spurred life

07.11.2006
Hazy skies on early Earth could have provided a substantial source of organic material useful for emerging life on the planet, according to a new study led by the University of Colorado at Boulder.

In a study published in the Proceedings for the National Academy of Sciences the week of Nov. 6, the research team measured organic particles produced from the kind of atmospheric gases thought to be present on early Earth. The laboratory experiment modeled conditions measured by the Huygens probe on Saturn's moon, Titan, last year during the NASA-European Space Agency's Cassini mission, according to Margaret Tolbert of CU-Boulder's Cooperative Institute for Research in Environmental Sciences, one of the study's authors.

The researchers mimicked Titan's hazy skies by exposing methane gas to an ultraviolet lamp, then added carbon dioxide gas to the mix to see if conditions that were probably present on early Earth would produce a similar organic haze. "It turns out that organic haze can form over a wide range of methane and carbon dioxide concentrations," said Tolbert. "This means that hazy conditions could have been present for many millions or even a billion years on Earth while life was evolving."

According to co-author Melissa Trainer of CU-Boulder's Laboratory for Atmospheric and Space Physics, the study was the first to measure the chemical properties of aerosols by irradiating methane and carbon dioxide with ultraviolet light. "We found that you can make a lot of organic material virtually out of thin air," said Trainer, who completed her doctoral degree in CU-Boulder's chemistry and biochemistry department at CU in May 2006 under Tolbert.

Scientists believe the atmospheric chemistry of Titan might hold valuable clues to understanding the climate on Earth when life was just forming, said Trainer. Titan is an unusual solar system moon in that it has an atmosphere -- in this case one thick with organic aerosol particles that form through photochemical processes when sunlight reacts with methane gas, she said.

According to the study, a similar haze hanging over Earth early in its history could have supplied more than 100 million tons of organic material to the planet's surface each year. "As these particles settled out of the skies, they would have provided a global source of food for living organisms," said Trainer.

Previous efforts to understand early life on Earth have focused on extreme environments like hydrothermal vents, where energy and nutrients are plentiful, said Tolbert. The new study shows that such a high-energy food source could have been produced globally early in Earth's history, possibly expanding the habitable domain for early life, she said.

In addition to serving as a source of organic material, a haze layer over Earth could have shielded living organisms from harmful UV rays and helped to regulate Earth's early climate, according to the study. The haze may have contributed to the geologic record on Earth by depositing organic carbon into some of the planet's most ancient rocks, said Alexander Pavlov, a study co-author and former LASP researcher now at the University of Arizona. Organic carbon is believed by scientists to be of biological origin.

Other authors on the study included LASP's Owen Toon, H. Langley Dewitt and Jose Jimenez of CIRES, and Christopher McKay of NASA's Ames Research Center in Moffett Field, Calif.

"It's exciting to see that the early Earth experiments produced so much organic matter," said Carl Pilcher, director of NASA's Astrobiology Institute, headquartered at NASA Ames. "An organic haze produced this way on early Earth could have contributed to the formation and sustenance of life."

Margaret Tolbert | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Physics and Astronomy:

nachricht Enhancing the quantum sensing capabilities of diamond
23.11.2017 | The Hebrew University of Jerusalem

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>