Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Early Earth haze may have spurred life

Hazy skies on early Earth could have provided a substantial source of organic material useful for emerging life on the planet, according to a new study led by the University of Colorado at Boulder.

In a study published in the Proceedings for the National Academy of Sciences the week of Nov. 6, the research team measured organic particles produced from the kind of atmospheric gases thought to be present on early Earth. The laboratory experiment modeled conditions measured by the Huygens probe on Saturn's moon, Titan, last year during the NASA-European Space Agency's Cassini mission, according to Margaret Tolbert of CU-Boulder's Cooperative Institute for Research in Environmental Sciences, one of the study's authors.

The researchers mimicked Titan's hazy skies by exposing methane gas to an ultraviolet lamp, then added carbon dioxide gas to the mix to see if conditions that were probably present on early Earth would produce a similar organic haze. "It turns out that organic haze can form over a wide range of methane and carbon dioxide concentrations," said Tolbert. "This means that hazy conditions could have been present for many millions or even a billion years on Earth while life was evolving."

According to co-author Melissa Trainer of CU-Boulder's Laboratory for Atmospheric and Space Physics, the study was the first to measure the chemical properties of aerosols by irradiating methane and carbon dioxide with ultraviolet light. "We found that you can make a lot of organic material virtually out of thin air," said Trainer, who completed her doctoral degree in CU-Boulder's chemistry and biochemistry department at CU in May 2006 under Tolbert.

Scientists believe the atmospheric chemistry of Titan might hold valuable clues to understanding the climate on Earth when life was just forming, said Trainer. Titan is an unusual solar system moon in that it has an atmosphere -- in this case one thick with organic aerosol particles that form through photochemical processes when sunlight reacts with methane gas, she said.

According to the study, a similar haze hanging over Earth early in its history could have supplied more than 100 million tons of organic material to the planet's surface each year. "As these particles settled out of the skies, they would have provided a global source of food for living organisms," said Trainer.

Previous efforts to understand early life on Earth have focused on extreme environments like hydrothermal vents, where energy and nutrients are plentiful, said Tolbert. The new study shows that such a high-energy food source could have been produced globally early in Earth's history, possibly expanding the habitable domain for early life, she said.

In addition to serving as a source of organic material, a haze layer over Earth could have shielded living organisms from harmful UV rays and helped to regulate Earth's early climate, according to the study. The haze may have contributed to the geologic record on Earth by depositing organic carbon into some of the planet's most ancient rocks, said Alexander Pavlov, a study co-author and former LASP researcher now at the University of Arizona. Organic carbon is believed by scientists to be of biological origin.

Other authors on the study included LASP's Owen Toon, H. Langley Dewitt and Jose Jimenez of CIRES, and Christopher McKay of NASA's Ames Research Center in Moffett Field, Calif.

"It's exciting to see that the early Earth experiments produced so much organic matter," said Carl Pilcher, director of NASA's Astrobiology Institute, headquartered at NASA Ames. "An organic haze produced this way on early Earth could have contributed to the formation and sustenance of life."

Margaret Tolbert | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>