Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The day LISA Pathfinder hung in the balance

12.10.2006
At the core of ESA's LISA Pathfinder mission sit two small hearts. Each is a cube, just 5 centimetres across. Together they will allow LISA Pathfinder to lay the foundations for future space-based measurements that investigate the very core of Einstein's General Relativity.

A cornerstone of relativity is the concept of a frame of reference. This is a set of bodies relative to which any motion can be measured. Without a reference frame, no motion through space can be detected. Scientists call a frame of reference 'inertial' if unperturbed objects appear in that frame, either at rest or moving at a constant velocity. For a reference frame to be perfectly inertial, the bodies that are used to mark it must be completely free of any force.

Einstein's General Relativity predicts that the gravity from celestial bodies warps our measurement of distances in such a frame. Once scientists can build an exact inertial frame of reference, they will be able to measure this warping. LISA Pathfinder will test a technique designed to measure a frame of reference much more precisely than ever before. "This will provide the foundation stone for any future mission in General Relativity, if not also in gravitation and navigation at large" says Stefano Vitale, the mission's Principal Investigator.

To make this measurement, LISA Pathfinder uses two 'proof-masses'. Each is a small cube of a gold and platinum alloy, whose relative motion is measured by a laser beam. Once in space, the proof-masses will float freely within the spacecraft. When subtle forces act on the proof-masses, the laser beam will detect the way they change position to within a few thousandths of a billionth of a meter, and will be able to detect forces as small as the weight of a typical bacterium.

Such precision measurements belong to metrology, a highly specialised science in its own right. "This makes the mission not just the pathfinder for gravitational wave astronomy missions like LISA, but also the first mission in the field of advanced metrology," says Vitale.

The perfect proof-mass is one that responds only to the force of gravity. That means the proof-masses should not be susceptible to stray magnetic fields, which can move them around and mimic the action of gravity. "On LISA Pathfinder, there are magnetic components that the proof-masses could respond to," says Laurent Trougnou, an electromagnetic engineer on LISA Pathfinder, at the European Space Agency.

To compensate, the test masses are made of gold and platinum. It turns out that a magic mixture of these two metals has almost no magnetic susceptibility, yet even that was not good enough for LISA Pathfinder. The scientists still needed to precisely measure how the proof-masses respond to magnetic forces so that they can compensate for this in their calculations.

They turned to Richard Davis, head of the mass section at the International Bureau of Weights and Measures (BIPM), located in France. The BIPM is the custodian of the kilogramme and Davis is an expert at measuring magnetic properties so that precise standards of mass can be created.

"We used a very sensitive balance to measure the force on a proof-mass due to the magnetic field produced by a small magnet," says Davis. From this, they teased out the magnetic properties of the proof-mass. "We had never before looked for a signal that small, or manipulated a delicate 2 kilogramme cube," he adds.

The measurements were conducted successfully over two days and take the LISA Pathfinder team one step closer to its scheduled launch date of 2009. LISA Pathfinder paves the way for LISA, three spacecraft that will work together to detect Einstein's predicted ripples, known as gravitational waves, in the fabric of spacetime.

Giuseppe Racca | alfa
Further information:
http://www.esa.int/esaSC/SEMUD5V74TE_index_0.html

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>