Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The day LISA Pathfinder hung in the balance

12.10.2006
At the core of ESA's LISA Pathfinder mission sit two small hearts. Each is a cube, just 5 centimetres across. Together they will allow LISA Pathfinder to lay the foundations for future space-based measurements that investigate the very core of Einstein's General Relativity.

A cornerstone of relativity is the concept of a frame of reference. This is a set of bodies relative to which any motion can be measured. Without a reference frame, no motion through space can be detected. Scientists call a frame of reference 'inertial' if unperturbed objects appear in that frame, either at rest or moving at a constant velocity. For a reference frame to be perfectly inertial, the bodies that are used to mark it must be completely free of any force.

Einstein's General Relativity predicts that the gravity from celestial bodies warps our measurement of distances in such a frame. Once scientists can build an exact inertial frame of reference, they will be able to measure this warping. LISA Pathfinder will test a technique designed to measure a frame of reference much more precisely than ever before. "This will provide the foundation stone for any future mission in General Relativity, if not also in gravitation and navigation at large" says Stefano Vitale, the mission's Principal Investigator.

To make this measurement, LISA Pathfinder uses two 'proof-masses'. Each is a small cube of a gold and platinum alloy, whose relative motion is measured by a laser beam. Once in space, the proof-masses will float freely within the spacecraft. When subtle forces act on the proof-masses, the laser beam will detect the way they change position to within a few thousandths of a billionth of a meter, and will be able to detect forces as small as the weight of a typical bacterium.

Such precision measurements belong to metrology, a highly specialised science in its own right. "This makes the mission not just the pathfinder for gravitational wave astronomy missions like LISA, but also the first mission in the field of advanced metrology," says Vitale.

The perfect proof-mass is one that responds only to the force of gravity. That means the proof-masses should not be susceptible to stray magnetic fields, which can move them around and mimic the action of gravity. "On LISA Pathfinder, there are magnetic components that the proof-masses could respond to," says Laurent Trougnou, an electromagnetic engineer on LISA Pathfinder, at the European Space Agency.

To compensate, the test masses are made of gold and platinum. It turns out that a magic mixture of these two metals has almost no magnetic susceptibility, yet even that was not good enough for LISA Pathfinder. The scientists still needed to precisely measure how the proof-masses respond to magnetic forces so that they can compensate for this in their calculations.

They turned to Richard Davis, head of the mass section at the International Bureau of Weights and Measures (BIPM), located in France. The BIPM is the custodian of the kilogramme and Davis is an expert at measuring magnetic properties so that precise standards of mass can be created.

"We used a very sensitive balance to measure the force on a proof-mass due to the magnetic field produced by a small magnet," says Davis. From this, they teased out the magnetic properties of the proof-mass. "We had never before looked for a signal that small, or manipulated a delicate 2 kilogramme cube," he adds.

The measurements were conducted successfully over two days and take the LISA Pathfinder team one step closer to its scheduled launch date of 2009. LISA Pathfinder paves the way for LISA, three spacecraft that will work together to detect Einstein's predicted ripples, known as gravitational waves, in the fabric of spacetime.

Giuseppe Racca | alfa
Further information:
http://www.esa.int/esaSC/SEMUD5V74TE_index_0.html

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>