Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It might be…it could be…it is!!!

27.09.2006
Fermilab's CDF scientists make it official: They have discovered the quick-change behavior of the B-sub-s meson, which switches between matter and antimatter 3 trillion times a second.

Scientists of the CDF collaboration at the Department of Energy's Fermi National Accelerator Laboratory announced today (September 25, 2006) that they have met the exacting standard to claim discovery of astonishingly rapid transitions between matter and antimatter: 3 trillion oscillations per second.

Dr. Raymond L. Orbach, Undersecretary for Science in the U.S. Department of Energy, congratulated the CDF collaboration on the result.

"This remarkable tour de force details with exquisite precision how the antiworld is tied to our everyday realm," Dr. Orbach said. "It is a beautiful example of how, using increasingly sophisticated analysis, one can extract discovery from data from which much less was expected. It is a triumph for Fermilab."

The CDF discovery of the oscillation rate, marking the final chapter in a 20-year search, is immediately significant for two major reasons: reinforcing the validity of the Standard Model, which governs physicists' understanding of the fundamental particles and forces; and narrowing down the possible forms of supersymmetry, a theory proposing that each known particle has its own more massive "super" partner particle.

Many experiments worldwide have worked to perform high precision measurements of the behavior of matter and antimatter, especially as it pertains to strange, charm and bottom quarks. Scientists hope that by assembling a large number of precise measurements involving the exotic behavior of these particles, they can begin to understand why they exist, how they interact with one another and what role they played in the development of the early universe. Most importantly, they could also be the place in which to look for new physics beyond the Standard Model, which scientists believe is incomplete. Although none of these particles exists in nature today, they were, however, present in great abundance in the early universe. Thus, scientists can only produce and study them at large particle accelerators.

With a talk at Fermilab on Friday, September 22, Christoph Paus of the Massachusetts Institute of Technology, representing the CDF experiment, presented the discovery to the scientific community. The experimenters acquired their data between February 2002 and January 2006, an operating period known as Tevatron Run 2, where tens of trillions of proton-antiproton collisions were produced at the world's highest-energy particle accelerator. The results have been submitted in a paper to Physical Review Letters.

This first major discovery of Run 2 continues the tradition of particle physics discoveries at Fermilab, where the bottom (1977) and top (1995) quarks were discovered. Surprisingly, the bizarre behavior of the B_s (pronounced "B sub s") mesons is actually predicted by the Standard Model of fundamental particles and forces. The discovery of this oscillatory behavior is thus another reinforcement of the Standard Model's durability.

"Scientists have been pursuing this measurement for two decades, but the convergence of capabilities to make it possible has occurred just now," said CDF cospokesperson Jacobo Konigsberg of the University of Florida. "We needed to produce sufficient quantities to be able to study these particles in detail. That condition was met by the superb performance of the Tevatron. Then, with a process this fast, we needed extremely precise detectors and sophisticated analysis tools. Those conditions were met at CDF, along with the skill and contributions of a great team of people."

CDF physicists have previously measured the rate of the matter-antimatter transitions for the B_s meson, which consists of the heavy bottom quark bound by the strong nuclear interaction to a strange antiquark. Now they have achieved the standard for a discovery in the field of particle physics, where the probability for a false observation must be proven to be less than about 5 in 10 million (5/10,000,000). For CDF's result the probability is even smaller, at 8 in 100 million (8/100,000,000).

"Everyone in Fermilab's Accelerator Division has worked hard to create the number of collisions that were required to reach this impressive result," said Fermilab Director Pier Oddone. "We're glad that CDF has been able to put these efforts to such good effect. This is one of the signature measurements for Run II, and as we collect several times the data already on hand, I have great expectations for future discoveries."

Determining the astonishing rate of 3 trillion oscillations per second required sophisticated analysis techniques. CDF cospokespersons Konigsberg and Fermilab's Rob Roser explained that the B_s meson is a very short-lived particle. In order to understand its underlying characteristics, scientists have to observe how each particle decays to determine its true make-up.

"Developing the software tools to make maximal use of the information in each collision takes time and effort," said Roser, "but the rewards are there in terms of discovery potential and increased level of precision."

Many different theoretical models of how the universe works at a fundamental level will be now be confronted with the CDF discovery. The currently popular models of supersymmetry, for example, predict a much higher transition frequency than that observed by CDF, and those models will need to be reconsidered.

Marvin Goldberg, Division of Physics program director of the National Science Foundation, emphasized the collaborative role of the experimenters.

"This result reminds us that discoveries in particle physics require the coherent efforts of many people as well as advanced physical infrastructure," Goldberg said. "By combining the luminosity of the Tevatron, the precision of the CDF detector and the intellectual prowess of the international CDF collaboration with sophisticated data analysis, this remarkable result from a remarkable effort will advance our understanding of the way the universe works."

To further advance that understanding, Roser, Konigsberg and their colleagues continue to seek phenomena that are not predicted by the Standard Model. The prize would be a discovery of new physics.

"While the B_s oscillation discovery was one of the benchmark results that we wanted from the Tevatron," said Roser, "we still have more than half the data from Run 2 waiting to be analyzed. We're looking forward to more results, and we're always hoping for surprises."

CDF is an international experiment of 700 physicists from 61 institutions and 13 countries. It is supported by DOE, NSF and a number of international funding agencies (the full list can be found at http://www-cdf.fnal.gov/collaboration/Funding_Agencies.html). With the Tevatron, the world's highest-energy particle accelerator, in 1995 the CDF and DZero collaborations discovered the top quark, the final and most massive quark in the Standard Model.

Fermilab is a Department of Energy Office of Science national laboratory operated under contract by Universities Research Association, Inc.

Mike Perricone | EurekAlert!
Further information:
http://www.fnal.gov

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>