Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harvard University engineers demonstrate laser nanoantenna

07.09.2006
New laser could lead to higher density DVDs, more powerful microscopes and novel tools for biology and engineering

Engineers and applied scientists from Harvard University have demonstrated a new photonic device with a wide range of potential commercial applications, including dramatically higher capacity for optical data storage. Termed a plasmonic laser antenna, the design consists of a metallic nanostructure, known as an optical antenna, integrated onto the facet of a commercial semiconductor laser.

Spearheaded by two research groups led by Ken Crozier, assistant professor of electrical engineering, and Federico Capasso, Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering, the findings are published in the journal Applied Physics Letters. The researchers have also filed for U.S. patents covering this new class of photonic devices.

"The optical antenna collects light from the laser and concentrates it to an intense spot measuring tens of nanometers, or about one-thousandth the width of a single human hair," says Crozier. "The device could be integrated into optical data storage platforms and used to write bits far smaller than what's now possible with conventional methods. This could lead to vastly increased storage capacities in the terabyte range (a thousand gigabytes)."

Writable CDs and DVDs are a popular means for storing and backing up data, but the storage density is limited by the resolution limit of conventional optics. The optical antenna offers a substantial improvement in spatial resolution, which in turn leads to increased storage density. While optical antennas are similar to conventional antennas used for wireless communications (Wi-Fi), they are much smaller in scale -- only a few hundred nanometers across. Moreover, optical antennas operate in the visible and infrared portion of the electromagnetic spectrum; these wavelengths are far smaller than the wavelengths used in Wi-Fi.

"This invention extends the reach of semiconductor lasers -- which have the greatest commercial penetration of all lasers -- into the nanoscale and down to dimensions much smaller than a wavelength," says Capasso. "This means the plasmonic laser antenna is potentially useful in a broad range of scientific and engineering applications, including near-field optical microscopes, spatially resolved chemical imaging and spectroscopy."

The new device integrates an optical antenna and a laser into a single unit, consists of fewer components, has a smaller footprint (takes up less space), and benefits from an improved signal-to-noise ratio relative to previous approaches. The inventors expect, with further development, its wide adoption and use in academic and research settings as well as in the high-tech commercial sector.

"Eventually, we envision the laser integrated into new probes for biology like optical tweezers -- which can manipulate objects as small as a single atom," says Crozier. "It could also be used for integrated-circuit fabrication or to test impurities during the fabrication process itself. One day, consumers might be able to back up three terabytes data on one disk."

Michael Rutter | EurekAlert!
Further information:
http://www.deas.harvard.edu

More articles from Physics and Astronomy:

nachricht Mars 2020 mission to use smart methods to seek signs of past life
17.08.2017 | Goldschmidt Conference

nachricht Gold shines through properties of nano biosensors
17.08.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>