Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Death Of A Star Scientists Watch Supernova In Real-Time

31.08.2006
For the first time a star has been observed in real-time as it goes supernova – a mind bogglingly powerful explosion as the star ends its life, the resulting cosmic eruption briefly outshining an entire galaxy. UK scientists, in collaboration with international colleagues, used NASA's Swift satellite and a combination of orbiting and ground-based observatories to catch a supernova in the act of exploding. The results, including an associated and intriguing Gamma Ray Burst [GRB], appear in 31 August issue of Nature.

The event began on the 18th February, 2006, in a star forming galaxy about 440 million light-years away toward the constellation Aries. At that time it was immediately realised that this was an unusual gamma-ray burst, about 25 times closer and 100 times longer than a typical gamma-ray burst. The burst lasted for almost 40 minutes as opposed to a typical GRB of a few milliseconds to tens of seconds. Because the burst was so long Swift was able to observe the bulk of the explosion with all three of its instruments: the Burst Alert Telescope, which detected the burst and relayed the location to ground observatories within 20 seconds; the X-ray telescope [XRT] and Ultraviolet/Optical Telescope [UVOT], which provide high-resolution imagery and spectra across a broad range of wavelengths.

“The fact that Swift can re-point very fast, slewing round to bring the XRT and UVOT to bear on the burst allowed us to get onto it very quickly indeed, enabling us to observe the critically important early behaviour of the event” remarked Dr. Alex Blustin from University College London’s Mullard Space Science Laboratory [UCL/MSSL],

Careful, multi-wavelength analysis of space and ground-based observations has now revealed exactly what took place.

The exceptionally long burst, in the form of a jet of high-energy X-rays, pierced through the doomed star from its core and sent out a warning within minutes that a supernova was imminent. As the GRB faded away the massive star blew itself into smithereens.

"This GRB was the most extraordinary evolving object yet seen by Swift,” said team member Dr. Paul O’Brien at the University of Leicester. “The three on-board telescopes all detected a slowly brightening then fading object. The results suggest a broad jet expanded into the surroundings but it was accompanied by a slower-moving and incredibly hot - two million degree - bubble of gas produced from the shock-wave of the exploding star”.

Swift's three telescopes - covering gamma ray, X-ray, ultraviolet and optical wavelengths - captured X-rays fading to ultraviolet and then optical light, evidence of the shock wave from the explosion pushing exploded star material into the surrounding medium. Dr. Alex Blustin and colleague Dr. Mat Page, also from UCL/MSSL, conducted the analysis of Swift’s ultra violet and optical data that tracked the expansion of the shock wave from the explosion.

Paul O’Brien added,” This is the first time such an extraordinary event has been seen from a GRB. The thermal component of the supernova shock wave was clearly seen in this case as the GRB itself was fairly modest, some 100 times less than a typical GRB - a mere ten million billion times the power of the Sun!"

UK astronomers from the Universities of Leicester and Hertfordshire were part of a group led by Italy’s National Institute for Astrophysics that used the European Southern Observatory’s 8.2-metre Very Large Telescope [VLT] in Chile and the University of California’s Lick Observatory Shane 3-metre telescope to obtain regularly-sampled optical spectroscopy of the shock wave. Two days later the classical supernova, a glowing cloud of gas powered by the decay of radioactive debris from the dead star, was beginning to outshine the fading shock wave.

Dr Andrew Levan, University of Hertfordshire said,” As well as studying the early evolution of the supernova for the first time these observations also show how the material ejected in the explosion evolve in the following days and weeks, the timescales on which supernovae are normally studied”. Dr. Levan added,” This shows that the supernova associated with this GRB is a transition object, brighter than most supernovae in the universe, but fainter than those previously seen with GRB’s. Understanding the reasons for this is a crucial step in understanding why only a small percentage of massive stars can create GRB’s”.

“Usually these events are not detected until after the supernova has brightened substantially in the optical wavelength, many days after the initial explosion”, commented Prof. Keith Mason, UK lead investigator for the UVOT telescope on Swift and CEO of the Particle Physics and Astronomy Research Council [PPARC],” but on this occasion we were able to study the remarkable event in all its glory from the very beginning”.

Peter Barratt | alfa
Further information:
http://www.pparc.ac.uk
http://www.nasa.gov/mission_pages/swift/bursts/oddball_burst.html

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>