Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Death Of A Star Scientists Watch Supernova In Real-Time

31.08.2006
For the first time a star has been observed in real-time as it goes supernova – a mind bogglingly powerful explosion as the star ends its life, the resulting cosmic eruption briefly outshining an entire galaxy. UK scientists, in collaboration with international colleagues, used NASA's Swift satellite and a combination of orbiting and ground-based observatories to catch a supernova in the act of exploding. The results, including an associated and intriguing Gamma Ray Burst [GRB], appear in 31 August issue of Nature.

The event began on the 18th February, 2006, in a star forming galaxy about 440 million light-years away toward the constellation Aries. At that time it was immediately realised that this was an unusual gamma-ray burst, about 25 times closer and 100 times longer than a typical gamma-ray burst. The burst lasted for almost 40 minutes as opposed to a typical GRB of a few milliseconds to tens of seconds. Because the burst was so long Swift was able to observe the bulk of the explosion with all three of its instruments: the Burst Alert Telescope, which detected the burst and relayed the location to ground observatories within 20 seconds; the X-ray telescope [XRT] and Ultraviolet/Optical Telescope [UVOT], which provide high-resolution imagery and spectra across a broad range of wavelengths.

“The fact that Swift can re-point very fast, slewing round to bring the XRT and UVOT to bear on the burst allowed us to get onto it very quickly indeed, enabling us to observe the critically important early behaviour of the event” remarked Dr. Alex Blustin from University College London’s Mullard Space Science Laboratory [UCL/MSSL],

Careful, multi-wavelength analysis of space and ground-based observations has now revealed exactly what took place.

The exceptionally long burst, in the form of a jet of high-energy X-rays, pierced through the doomed star from its core and sent out a warning within minutes that a supernova was imminent. As the GRB faded away the massive star blew itself into smithereens.

"This GRB was the most extraordinary evolving object yet seen by Swift,” said team member Dr. Paul O’Brien at the University of Leicester. “The three on-board telescopes all detected a slowly brightening then fading object. The results suggest a broad jet expanded into the surroundings but it was accompanied by a slower-moving and incredibly hot - two million degree - bubble of gas produced from the shock-wave of the exploding star”.

Swift's three telescopes - covering gamma ray, X-ray, ultraviolet and optical wavelengths - captured X-rays fading to ultraviolet and then optical light, evidence of the shock wave from the explosion pushing exploded star material into the surrounding medium. Dr. Alex Blustin and colleague Dr. Mat Page, also from UCL/MSSL, conducted the analysis of Swift’s ultra violet and optical data that tracked the expansion of the shock wave from the explosion.

Paul O’Brien added,” This is the first time such an extraordinary event has been seen from a GRB. The thermal component of the supernova shock wave was clearly seen in this case as the GRB itself was fairly modest, some 100 times less than a typical GRB - a mere ten million billion times the power of the Sun!"

UK astronomers from the Universities of Leicester and Hertfordshire were part of a group led by Italy’s National Institute for Astrophysics that used the European Southern Observatory’s 8.2-metre Very Large Telescope [VLT] in Chile and the University of California’s Lick Observatory Shane 3-metre telescope to obtain regularly-sampled optical spectroscopy of the shock wave. Two days later the classical supernova, a glowing cloud of gas powered by the decay of radioactive debris from the dead star, was beginning to outshine the fading shock wave.

Dr Andrew Levan, University of Hertfordshire said,” As well as studying the early evolution of the supernova for the first time these observations also show how the material ejected in the explosion evolve in the following days and weeks, the timescales on which supernovae are normally studied”. Dr. Levan added,” This shows that the supernova associated with this GRB is a transition object, brighter than most supernovae in the universe, but fainter than those previously seen with GRB’s. Understanding the reasons for this is a crucial step in understanding why only a small percentage of massive stars can create GRB’s”.

“Usually these events are not detected until after the supernova has brightened substantially in the optical wavelength, many days after the initial explosion”, commented Prof. Keith Mason, UK lead investigator for the UVOT telescope on Swift and CEO of the Particle Physics and Astronomy Research Council [PPARC],” but on this occasion we were able to study the remarkable event in all its glory from the very beginning”.

Peter Barratt | alfa
Further information:
http://www.pparc.ac.uk
http://www.nasa.gov/mission_pages/swift/bursts/oddball_burst.html

More articles from Physics and Astronomy:

nachricht Riddle of matter remains unsolved: Proton and antiproton share fundamental properties
19.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Space radiation won't stop NASA's human exploration
18.10.2017 | NASA/Johnson Space Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Rapid environmental change makes species more vulnerable to extinction

19.10.2017 | Life Sciences

Integrated lab-on-a-chip uses smartphone to quickly detect multiple pathogens

19.10.2017 | Interdisciplinary Research

Fossil coral reefs show sea level rose in bursts during last warming

19.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>