Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low altitude flying with coarse maps – determining the time of SMART-1 impact

28.08.2006
What exactly determines the time of the SMART-1 impact? What causes the uncertainty in the impact time?

The SMART-1 spacecraft is currently expected to impact the Moon's surface on 3 September 2006, at 07:41 CEST (05:41 UT). However, it is also possible that the small satellite hits the Moon on the previous orbit at 02:37 CEST (00:37 UT).

Why?

The time of impact has been determined by orbit predictions following the major thruster manoeuvres performed from 23 June to 2 July 2006 (plus a few trajectory correction manoeuvres performed on 27 and 28 July 2006) – aimed at changing the impact site from the lunar far-side to the lunar near-side, taking into account the Sun-Earth-Moon gravity perturbations. These make the SMART-1 orbit perilune (point of closest approach to the lunar surface) naturally drift down about one kilometre per orbit.

In determining the impact orbit, ESA's spacecraft control experts are also taking into account the tiny perturbations to the trajectory induced by the small hydrazine thrusters to offload the spacecraft reaction wheels, and some slight additional gravity perturbations. An additional slot is also available for a corrective manoeuvre on 1 and 2 September 2006 if needed, to maintain the impact time as planned and allow ground based observations.

There remains, however, an uncertainty on the time of impact, because the lunar topography is still not completely known. The best lunar topographic maps currently available are based on data from the US Clementine mission in 1994. The laser altimeter experiment (LIDAR) on board provided the spacecraft altitude over a grid of roughly every kilometre. The values in between have been interpolated by the SMART-1 experts, assuming that there are no unknown peaks in those areas.

However, there is still a chance that an unknown peak is just in SMART-1's way as the spacecraft spirals down to the surface. This means that, if encountering terrain about one kilometre high, SMART-1 may hit ground at 02:37 CEST (00:37 UT), at which time the spacecraft will be flying at about 800 metres altitude. This would result in an impact one orbit earlier than the estimated 07:41 CEST (05:41 UT) impact on 3 September. For the same reason, there is even a possibility that impact could happen on 2 September, at 21:33 CEST (19:33 UT).

So, for SMART-1, the last lunar approach orbits will be rather like low-altitude flying with incomplete terrain maps. Results from SMART-1 and the next fleet of lunar orbiters may help to improve maps for future lunar exploration.

Impact visibility for ground observers

"Dependent on the impact times, different parts of the world will have the best seats for the final impact show , some seats in sunlight and others at night", says Bernard Foing, ESA SMART-1 Project Scientist.

If the impact occurs nominally on 3 September 2006 at 07:41 CEST (05:41 UT), observers from North and South America and the East Pacific will be able to see the impact or 'listen' to it through radio telescopes during night time, with best views from America's East coasts as well as from Hawaii and the East Pacific.

If the probe impacts on 3 September at 02:36 CEST (00:36 UT), the impact will be easily visible from South America, Canary Islands (Spain) and the US East coast, and from radio observatories from the US in daylight.

Should the impact occur on 2 September 2006 at 21:33 CEST (19:33 UT), two orbits before the nominal one, then Africa and South Europe would have a clear view just after sunset. Radio observatories from South America can listen to SMART-1's final signal in daylight.

For more information on the ground observations follow this link to find more information about SMART-1 impact site observations.

Bernard Foing | alfa
Further information:
http://www.esa.int

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>