Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small waves can produce monster waves

10.08.2006
Normal waves can unexpectedly turn into waves the size of a ten-story building. What’s more, these monster waves arise many times more rapidly than was previously thought. This has been shown by researchers at Umeå University in Sweden.

It is generally known among seafarers that in normal waves you can suddenly stand eye to eye with 25- to 30-meter waves, so-called monster waves. Unlike a tsunami, which is formed by powerful earthquakes at the bottom of the sea, monster waves arise out to sea among regular waves caused by winds. These monster waves are believed to have caused many shipwrecks through the years, and it is well known that oil platforms, like those off the Norwegian coast, are occasionally shaken by these waves.

Now, under the direction of Padma Shukla, scientists Bengt Eliasson, Mattias Marklund, and Lennart Stenflo of Umeå University have shown that normal random small waves, from gusts of wind, for instance, can suddenly give rise to monster waves. If the conditions are right, these monster waves grow by ‘borrowing’ energy from surrounding waves, a so-called non-linear effect, and these scientists have now managed to use computer simulations and other methods to produce images of how these waves are created. The results achieved by the Umeå researchers also show that such waves grow to enormous proportions many times more quickly than was previously believed.

“The consequences of an encounter with monster waves are catastrophic for those working on ships and oil platforms. These new research findings can enhance our knowledge of how and why monster waves form. Detailed knowledge of this phenomenon will be a cornerstone in finding methods to predict the course of these waves,” says Mattias Marklund, professor of physics at Umeå University.

Since monster waves appear to come out of nowhere and do not have the properties we usually associate with waves, stories of monster waves have previously been viewed as tall tales. In recent years, however, satellites have been used to observe how these waves suddenly appear, only to disappear just as suddenly. The findings from these observations have led to the insight that monster waves occur much more frequently than was ever suspected.

These findings are presented in the scientific journal Physical Review Letters.

Press Office | alfa
Further information:
http://www.vr.se

More articles from Physics and Astronomy:

nachricht Taming 'wild' electrons in graphene
23.10.2017 | Rutgers University

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Introduction of a novel system for in vitro analyses of zebrafish oligodendrocyte progenitor cells

23.10.2017 | Life Sciences

Did you know how many parts of your car require infrared heat?

23.10.2017 | Automotive Engineering

3rd Symposium on Driving Simulation

23.10.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>