Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cool solution to waste disposal

01.08.2006
As the Committee on Radioactive Waste Management (CoRWM) prepares to issue advice to government on nuclear waste, a group of physicists claims to have discovered a technique that could make nuclear waste much easier to deal with.

The new technique, reported in the August edition of Physics World, would render nuclear waste harmless on timescales of just a few tens of years, instead of thousands.

Professor Claus Rolfs, leader of the group at Ruhr University in Bochum, Germany, said “The method we are proposing means that nuclear waste could probably be dealt with entirely within the lifetimes of the people that produce it. We would not have to put it underground and let our great-great-grandchildren pay the price for our high standard of living.”

The technique involves embedding the nuclear waste in a metal and cooling it to ultra-low temperatures. This speeds up the rate of decay of the radioactive materials potentially cutting their half lives by a factor of 100 or more.

Professor Rolfs added “We are currently investigating radium-226, a hazardous component of spent nuclear fuel with a half-life of 1600 years. I calculate that using this technique could reduce the half-life to 100 years. At best, I have calculated that it could be reduced to as little as two years. This would avoid the need to bury nuclear waste in deep repositories - a hugely expensive and difficult process.”

Rolfs developed the technique after trying to recreate experimentally the way in which atomic nuclei react in the centre of stars. Whilst using a particle collider to carry out his studies, he noticed that more nuclear fusion reactions happened in the collider if the atomic nuclei were encased in metal and cooled. Fusion involves light nuclei coalescing to form heavier nuclei, releasing energy in the process. Radioactive decay is the opposite: a particle is released from a nucleus. Rolfs believes that if cooling nuclei in metal enhances fusion, it could enhance the opposite reaction, namely speeding up the rate at which radioactive particles decay.

According to Rolfs, the lower temperature of the metal means that free electrons can get closer to the radioactive nuclei. These electrons accelerate positively charged particles towards the nuclei, thereby increasing the probability of fusion reactions, or in the opposite case, accelerate particles that are being ejected from the nucleus.

“We are working on testing the hypothesis with a number of radioactive nuclei at the moment and early results are promising”, he said. “It is early days, and much engineering research will need to be done to put this idea into practise, but I don’t think there will be any insurmountable technical barriers.”

Helen MacBain | alfa
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>