Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cool solution to waste disposal

01.08.2006
As the Committee on Radioactive Waste Management (CoRWM) prepares to issue advice to government on nuclear waste, a group of physicists claims to have discovered a technique that could make nuclear waste much easier to deal with.

The new technique, reported in the August edition of Physics World, would render nuclear waste harmless on timescales of just a few tens of years, instead of thousands.

Professor Claus Rolfs, leader of the group at Ruhr University in Bochum, Germany, said “The method we are proposing means that nuclear waste could probably be dealt with entirely within the lifetimes of the people that produce it. We would not have to put it underground and let our great-great-grandchildren pay the price for our high standard of living.”

The technique involves embedding the nuclear waste in a metal and cooling it to ultra-low temperatures. This speeds up the rate of decay of the radioactive materials potentially cutting their half lives by a factor of 100 or more.

Professor Rolfs added “We are currently investigating radium-226, a hazardous component of spent nuclear fuel with a half-life of 1600 years. I calculate that using this technique could reduce the half-life to 100 years. At best, I have calculated that it could be reduced to as little as two years. This would avoid the need to bury nuclear waste in deep repositories - a hugely expensive and difficult process.”

Rolfs developed the technique after trying to recreate experimentally the way in which atomic nuclei react in the centre of stars. Whilst using a particle collider to carry out his studies, he noticed that more nuclear fusion reactions happened in the collider if the atomic nuclei were encased in metal and cooled. Fusion involves light nuclei coalescing to form heavier nuclei, releasing energy in the process. Radioactive decay is the opposite: a particle is released from a nucleus. Rolfs believes that if cooling nuclei in metal enhances fusion, it could enhance the opposite reaction, namely speeding up the rate at which radioactive particles decay.

According to Rolfs, the lower temperature of the metal means that free electrons can get closer to the radioactive nuclei. These electrons accelerate positively charged particles towards the nuclei, thereby increasing the probability of fusion reactions, or in the opposite case, accelerate particles that are being ejected from the nucleus.

“We are working on testing the hypothesis with a number of radioactive nuclei at the moment and early results are promising”, he said. “It is early days, and much engineering research will need to be done to put this idea into practise, but I don’t think there will be any insurmountable technical barriers.”

Helen MacBain | alfa
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>