Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Speeding Up a Computer's Second Opinion for Breast Cancer

27.07.2006
To help computers provide faster "second opinions" on mammogram images showing suspicious-looking breast masses, medical physicists at Duke University are employing a Google-like approach that retrieves useful information from an existing mammogram database within three seconds.

Rather than comparing the mammogram image in question to every image of breast cancer in a computer database, the new approach compares the mammogram in question to selected images that are most highly ranked for their information content. This is analogous to how a Google search first returns a list of only those websites that it determines to have the most important and useful information on the words entered in the search.

In a pilot study that will be presented in August at the 48th Annual Meeting of the American Association of Physicists in Medicine in Orlando, the approach enabled computers to maintain their high level of accuracy while performing faster analysis. Such speed and efficiency will be important as such image databases rapidly grow larger and more complex.

Knowledge-based computer-assisted detection (CAD) systems compare mammogram images to those of known cases of breast cancer in order to aid radiologists in their diagnosis. However, as clinical image libraries grow rapidly in mammography practice, knowledge-based CAD systems get slower and less efficient.

In efforts to prevent such systems from bogging down, Duke's Georgia D. Tourassi, Ph.D. (Georgia.tourassi@duke.edu) will present a Knowledge-Based Computer Assisted Detection (KB-CAD) system that analyzes breast masses using the principles of information theory.

When a new, unknown case is presented for analysis, the KB-CAD system compares the case to mammography images in the database. It retrieves cases that are similar, those that share certain visual features and properties. If the unknown case is similar enough to a known case of breast cancer, then this would suggest the presence of cancer.

Although diagnostically accurate, this practice becomes inefficient as the image database increases in size. Therefore, the researchers incorporate an additional approach.

Instead of comparing the new unknown case with all mammography images stored in the knowledge database, the researchers restrict the analysis to the stored cases that are most informative. The selection of the most informative cases is done using an image indexing strategy based on the concept of "image entropy." Image entropy represents a measure of the disorder or complexity in the image. An image that is all black or white has zero entropy. An image of a checkerboard has low entropy—it consists of an equal number of light and dark pixels. Complex images with more uniform distributions of many pixel intensity levels have higher entropy and are considered more informative in the context of the Duke system.

Normal breast tissue "can be as complex as a tumor," Tourassi says. "This is precisely the reason mammographic diagnosis is such a challenging task. Our database inlcudes normal cases as well in the decision-making process."

In the recent pilot study, the Duke researchers applied their technique to a database of 2,300 mammography images. With entropy indexing, the researchers compared a sample image to the top 600 most informative, cutting down their CAD system's processing time by one-fourth, to less than 3 seconds per query. The researchers expect to launch a larger study in a year to evaluate the clinical impact of this new approach.

Meeting Paper: TU-D-330A-8, "Information-Theoretic CAD System in Mammography: Investigation of An Entropy-Based Indexing Scheme for Improved Computational Efficiency and Robust Performance," Tuesday, August 1, 2006, 2:54-3:06 PM, Room 330A. Click Here for Technical Abstract

Presented at: 48th Annual Meeting of the American Association of Physicists in Medicine, July 30-August 3, 2006, Orange County Convention Center, Orlando, FL. Click Here for Meeting Homepage

ABOUT AAPM

AAPM is a scientific, educational, and professional organization of more than 6,000 medical physicists. Headquarters are located at the American Center for Physics in College Park, MD. Publications include a scientific journal ("Medical Physics"), technical reports, and symposium proceedings.

Ben Stein | EurekAlert!
Further information:
http://www.aip.org
http://www.aapm.org

More articles from Physics and Astronomy:

nachricht Telescopes team up to study giant galaxy
12.12.2017 | International Centre for Radio Astronomy Research

nachricht Midwife and signpost for photons
11.12.2017 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>