Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology will allow for flexible television and computer screens

15.05.2006

Organic light emitting diodes (OLED) are the technology used in making light emitting fabrics used in cell phones and televisions. The fabrication of flexible OLEDs has up to now been held back by the fragility of the brittle indium tin oxide layer that serves as the transparent electrode. But researchers at the Regroupement Québecois sur les Matériaux de Pointe (RQMP) have found a solution which they published in the May online issue of Applied Physics Letters.

"Organic light emitting diodes have in recent years emerged as a promising low cost technology for making large area flat panel displays and flexible light emitting fabrics," explains Richard Martel, professor at the Université de Montréal’s chemistry department. "By using carbon nanotubes, a highly conductive and flexible tube shaped carbon nanostructure, thin sheets a few tens of nanometers in thickness can be fabricated following a procedure akin to making paper. These sheets preserve the conductivity and flexibility of the carbon nanotubes and are thin enough to be highly transparent."

By following the fabrication procedure they developed, the researchers succeeded in producing a high-performance OLED on this new electrode material. In their work they also outline the parameters that can be further optimized in order improve the performance of their design. "In addition to their flexibility, carbon nanotube sheets exhibit a number of properties that make them an attractive alternative to transparent conducting oxides for display and lighting applications," says Carla Aguirre, a researcher at the École Polytechnique affiliated with the Université de Montréal. "By applying the appropriate chemical treatment they can in principle be also made to replace the metal electrode in order to make OLEDs that emit light from both sides."

The potential market applications of this technology are many. From rolled-up computer screens to light emitting clothes, this technology will find many uses.

The research Group included: Carla Aguirre and Patrick Desjardins from École Polytechnique, Stéphane Auvray and Richard Martel from Université de Montréal, S. Pigeon from OLA Display Corporation and R. Izquierdo from Université du Québec à Montréal.

| EurekAlert!
Further information:
http://www.umontreal.ca

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>