Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers construct largest-ever 3D map of a million galaxies

15.05.2006


An international team of astronomers released today (15 May) new results on the Cosmos, based on the largest map of the heavens ever produced.



This massive atlas emphatically confirmed recent findings that the Universe is full of ’dark energy’, a mysterious substance that makes up three-quarters of our Universe, together with ’dark matter’ which accounts for most of the remaining quarter. Understanding this composition is now one of the most important problems facing the whole of science.

"We now have a precise view of what makes up our Universe, but little idea as to why,” said Prof. Ofer Lahav, a member of the international team and the Head of the Astrophysics Group at University College London. “It is intriguing that the ordinary matter our bodies are made of and that we experience in everyday life only accounts for a few percent of the total cosmic budget."


Our Universe contains billions of galaxies of all shapes and sizes. In recent years astronomers have used increasingly large surveys to map out the positions of these galaxies, stepping their way out into the Cosmos.

The new cosmic map unveiled today is the largest to date -- a three-dimensional atlas of over a million galaxies spread over a distance of more than 5 billion light years. The findings confirm that we live in a Universe filled with mysterious dark matter and dark energy.

"We have analyzed the patterns in this map and discovered waves of structure over a billion light years across," said Dr. Chris Blake of the University of British Columbia, principal author of the study. "These waves were generated billions of years ago and have been vastly stretched in size by the expanding Universe."

Construction of the cosmic atlas was led by co-author Dr. Adrian Collister of the University of Cambridge, as part of his PhD work, using a novel Artificial Intelligence technique he developed with his supervisor Prof. Ofer Lahav.

"By using very accurate distances of just 10,000 galaxies to train the computer algorithm we have been able to estimate reasonably good distances for over a million galaxies," said Collister. "This novel technique is the way of the future."

The original 2-dimensional positions of colours of the one million galaxies were from the Sloan Digital Sky Survey.

The precise observations of the 10,000 galaxy distances were made as part of an international collaboration between U.S., U.K. and Australian teams using data from the Sloan Digital Sky Survey and the Anglo-Australian Telescope.

By measuring the positions of galaxies, astronomers can unravel the balance of forces that govern our Universe: the force of gravity which pulls everything together, and the competing effect of the expanding Universe which smoothes things out. These cosmic forces have arranged the galaxy distribution into a complex network of clusters, filaments and voids.

"The galaxy map can tell us the amount of ordinary ’baryonic’ matter relative to the amount of mysterious ’dark matter’,” said co-author Dr. Sarah Bridle of University College London. "We have confirmed that over 80% of the material in the Universe consists of an invisible dark matter whose nature is not yet understood."

The cosmic atlas of a million galaxies will shortly be made freely available on the World Wide Web for the benefit of other researchers. This free exchange of data is an important feature of modern astronomy, since many discoveries are only possible when different observations are combined.

The key problem in mapping the cosmos is determining the distance to each galaxy. Researchers can measure these distances because as the Universe expands, the colour of each galaxy changes as their emitted light waves are stretched or ‘redshifted’.

Traditionally, astronomers have needed to take a "spectrum" of each galaxy to determine this distance, splitting its light into many components to reveal sharp features with which to measure the amount of redshifting. This requires a time-consuming, individual observation of each galaxy.

The new cosmic map has been constructed using a novel technique focusing on a special class of galaxy whose intrinsic colour is very well known. For these ‘Luminous Red Galaxies’ researchers can measure the amount of colour distortion, and hence the approximate distance of the galaxy, just by looking at digital images of the sky, without the need to obtain a full spectrum.

All that is needed to exploit the technique is accurate observations of a small sample of the galaxies. In this case, precise measurements of just 10,000 galaxies were used to produce the atlas of over a million galaxies. These techniques will be very important for future large astronomical projects such as the Dark Energy Survey, scheduled to start in 2009, in which University College London and the universities of Portsmouth, Cambridge and Edinburgh are key partners.

Prof. Ofer Lahav | alfa
Further information:
http://www.ras.org.uk/

More articles from Physics and Astronomy:

nachricht Four elements make 2-D optical platform
26.09.2017 | Rice University

nachricht The material that obscures supermassive black holes
26.09.2017 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>