Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The comet with a broken heart


VLT takes images of disintegrating comet P73/Schwassmann-Wachmann 3

Broken Fragments of Comet P73 / Schwassmann-Wachmann 3 (FORS/VLT). ESO Press Photo 15b/06 (25 April 2006)
Copyright: ESO

On the night of April 23 to 24, ESO’s Very Large Telescope observed fragment B of the comet Schwassmann-Wachmann 3 that had split a few days earlier. To their great surprise, the ESO astronomers discovered that the piece just ejected by fragment B was splitting again! Five other mini-comets are also visible on the image. The comet seems thus doomed to disintegrate but the question remains in how much time.

Comet P73/Schwassmann-Wachmann 3 (SW 3) is a body with a very tormented past. This comet revolves around the Sun in about 5.4 years, in a very elongated orbit that brings it from inwards the Earth’s orbit to the neighbourhood of giant planet Jupiter. In 1995, when it was coming ‘close’ to the Earth, it underwent a dramatic and completely unexpected, thousand-fold brightening. Observations in 1996, with ESO’s New Technology Telescope and 3.6-m telescope, at La Silla, showed that this was due to the fact that the comet had split into three distinct pieces. Later, in December 1996, two more fragments were discovered. At the last comeback, in 2001, of these five fragments only three were still seen, the fragments C (the largest one), B and E. No new fragmentations happened during this approach, apparently.

Things were different this time, when the comet moved again towards its closest approach to the Sun – and to the Earth. Early in March, seven fragments were observed, the brightest (fragment C) being of magnitude 12, i.e. 250 fainter than what the unaided can see, while fragment B was 10 times fainter still. In the course of March, 6 new fragments were seen.

Early in April, fragment B went into outburst, brightening by a factor 10 and on 7 April, six new fragments were discovered, confirming the high degree of fragmentation of the comet. On 12 April, fragment B was as bright as the main fragment C, with a magnitude around 9 (16 times fainter than what a keen observer can see with unaided eyes). Fragment B seems to have fragmented again, bringing the total of fragments close to 40, some being most probably very small, boulder-sized objects with irregular and short-lived activity.

The new observations reveal that this new small fragment has split again! The image clearly reveals that below the main B fragment, there is a small fragment that is divided into two and a careful analysis reveals five more tiny fragments almost aligned. Thus, this image alone shows at least 7 fragments. The comet has produced a whole set of mini-comets!

Will the process continue? Will more and more fragments form and will the comet finally disintegrate? How many new fragments will have appeared before the comet reaches its closest approach to the Sun, around 7 June, and how bright will they be when the comet will be the closest to the Earth, on 11 to 14 May?

Fragment C of the comet should be the closest to Earth on 11 May, when it will be about 12 million km away, while fragment B will come as ‘close’ as 10 million km from Earth on 14 May. Although this is the closest a comet ever approached Earth in more than twenty years – even Comet Hyakutake’s smallest distance was 15 million km - this is still 26 times the distance between the Earth and the Moon and therefore does not pose any threat to our planet.

If nothing else happens, at the time of closest approach, fragment B will be just visible with unaided eye by experienced observers. It should be an easy target however to observe with binoculars. If we are lucky, however, fragment B presents another outburst, becoming a magnificent sight in the night sky. On the other hand, it could just as well fade away into oblivion. But then, the main fragment C should still be visible, even possibly with the unaided eye.

ESO telescopes will observe the comet in the greatest detail at the end of May, when it is best observed from Chile and is brighter. These observations will obtain invaluable information, especially as the fragmentation process is revealing all the pristine material buried below the crust of the comet. As such, these observations will prove an ideal complement to the most comprehensive observation campaign made with ESO telescopes of Comet Tempel 1 when it was being bombarded by the Deep Impact spacecraft, on 4 July 2005.

Henri Boffin | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>