Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Algorithm advance produces quantum calculation record

21.03.2006


Two theoreticians from the National Institute of Standards and Technology (NIST) and Indiana University (IU) have published the most accurate values yet for fundamental atomic properties of a molecule--values calculated from theory alone.



In a recent paper,* James Sims of NIST and Stanley Hagstrom of IU announced a new high-precision calculation of the energy required to pull apart the two atoms in a hydrogen molecule (H2). Accurate to 1 part in 100 billion, these are the most accurate energy values ever obtained for a molecule of that size, 100 times better than the best previous calculated value or the best experimental value. Their results are intrinsically interesting to astronomers studying galactic clouds of hydrogen, and to anyone else doing precision hydrogen spectroscopy, but the methods they used are perhaps equally important.

The calculation requires solving an approximation of the Schrödinger equation, one of the central equations of quantum mechanics. It can be approximated as the sum of an infinite number of terms, each additional term contributing a bit more to the accuracy of the result. For all but the simplest systems or a relative handful of terms, however, the calculation rapidly becomes impossibly complex. While very precise calculations have been done for systems of just three components such as helium (a nucleus and two electrons), Sims and Hagstrom are the first to reach this level of precision for H2 with two nuclei and two electrons. Their calculations were carried out to 7,034 terms.


To make the problem computationally practical, Sims and Hagstrom merged two earlier algorithms for these calculations--one which has advantages in ease of calculation, and one which more rapidly achieves accurate results--into a hybrid with some of the advantages of both. They also developed improved computer code for a key computational bottleneck (high-precision solution of the large-scale generalized matrix eigenvalue problem) using parallel processing. The final calculations were run on a 147-processor parallel cluster at NIST over the course of a weekend--on a single processor it would have taken close to six months.

Michael Baum | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht PPPL physicist uncovers clues to mechanism behind magnetic reconnection
24.01.2017 | DOE/Princeton Plasma Physics Laboratory

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>