Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers, at last, get a chance to size up a brown dwarf

16.03.2006


Brown dwarfs -- failed stars that fall somewhere between the smallest stars and the largest planets on the spectrum of heavenly objects -- have always been viewed by astronomers as a critical link in the understanding of how both stars and planets form.


A binary brown dwarf system found in the Orion Nebula gives astronomers their first opportunity to make detailed measurements of the failed stars. Brown dwarfs are stars that, because they lack sufficient mass, fail to achieve nuclear fusion. The star system is oriented so it can be observed edge-on from Earth, giving astronomers a chance to weigh and measure the radii of the stars. Image courtesy: Space Telescope Science Institute


The trouble with brown dwarfs, however, is that they are hard to find and, so far, they have defied nearly all attempts to accurately assess their size.

But now astronomers, including a University of Wisconsin-Madison astronomer, report the discovery of a pair of young brown dwarfs in mutual orbit, a discovery that has enabled scientists to weigh and measure the radius of brown dwarfs for the first time.

The discovery of the paired brown dwarfs and critical measurements of the unsuccessful stars are reported in the March 16 issue of Nature, a leading scientific journal, by a team of astronomers from Vanderbilt University, UW-Madison and the Space Telescope Science Institute.



"To really know for sure if something is a brown dwarf, you have to measure its mass," says Robert Mathieu, a UW-Madison professor of astronomy and an author of the new Nature report. "This was our first opportunity to do so with precision for young brown dwarfs."

The new work is important because it is the first direct measurement of the radii and masses of stars that have failed to achieve nuclear fusion, the fiery process at the heart of more conventional stars like the sun.

The discovery was made by Mathieu, Keivan G. Stassun of Vanderbilt, and Jeff A. Valenti of the Space Telescope Science Institute.

The group drew on a mass of observations first made over ten nights 12 years ago by Mathieu and Stassun. They used relatively small telescopes at the National Science Foundation’s (NSF) Kitt Peak National Observatory near Tucson, Ariz., and the U.S. Naval Observatory near Flagstaff, Ariz.

Over the next 12 years, the group accumulated an additional 1,600 measurements obtained over 300 nights of observing at Kitt Peak and the Cerro Tololo Inter-American Observatory, a major observatory operated by NSF in Chile, and at the international Gemini South observatory in Chile.

The brown dwarfs found by the group, according to Mathieu, are young, a mere 1 million years old. They reside just 1,500 light years from Earth in the Orion Nebula, a rich star-forming region of space.

"Our goal was to look for eclipsing binaries," says Mathieu of the observing program that scoured the well-known and much-studied stellar nursery. "We were looking for stars that blinked. That is the mark of an eclipsing binary (star system)."

Binary star systems -- when two stars are in mutual orbit -- are helpful to astronomers when they can be viewed edge-on and one star eclipses the other as they perform their celestial waltz. It is that eclipsing phenomenon that enabled the critical measurements of the stars’ physical properties, says Stassun, the Vanderbilt University professor who gathered the observations that underpin the new discovery while a graduate student with Mathieu at Wisconsin.

The brown dwarfs are about the size that astronomers predicted, given their youth. The bigger of the two is 50 times the size of Jupiter, the largest planet in our solar system. The smaller is about 30 times the size of Jupiter. Despite their large size -- 70 percent and 50 percent of the radius of the sun, respectively -- the brown dwarfs weigh in at only 5.5 percent and 3.5 percent of the mass of our sun.

Such measurements provide a "Rosetta Stone" for translating the physical properties of other brown dwarfs, even those not in a binary system, according to Stassun. Astronomers have long speculated about the physical attributes of brown dwarfs, but until now no one has been able to make a full set of direct measurements.

In most respects, the new observations conform to established theoretical models for brown dwarfs, but, surprisingly, the less massive of the two dwarfs is hotter than its heftier companion.

"When we look at stars, any stars, the more massive ones are always hotter," says Stassun. "What may be the case, and this is speculation, is that the smaller brown dwarf had its structure altered by some physical process not included in any of the current theoretical models, a strong magnetic field, perhaps."

An alternative explanation, Stassun says, is that the paired brown dwarfs are "not birth twins, but are adoptive twins."

In other words, they did not form together in the same coalescing mass of gas and dust, as most binary star systems do, but formed at different times and places, and somehow became companions locked in mutual orbit.

Theory holds that brown dwarfs begin life much as ordinary stars do, forming from clouds of interstellar dust and gas. However, the nuclear processes that drive conventional stars are never ignited as the pressure and temperature at the center of the star are not great enough -- because of the star’s low mass -- to get the jump-start they need.

"The defining characteristic of a brown dwarf is the mass is low enough that the central temperature never gets high enough to ignite hydrogen fusion," Mathieu explains.

However, brown dwarfs do glow, says Stassun, because of the powerful gravitational forces at play as the star contracts with age. The new work, says Mathieu, may also help resolve the different evolutionary pathways of stars and planets. Planets, like Jupiter, form in disks of gas that surround their parent stars, and thus have different characteristics than stars, including failed ones like brown dwarfs.

"Some people think of Jupiter as a failed star, but it very likely has an iron core, while these brown dwarfs are hydrogen to their very centers," Mathieu explains. "It is the comparison of these two evolutionary paths that make brown dwarfs and exoplanets linked and an exciting comparison."

Finally, the new findings will not only help astrophysicists refine theoretical models for brown dwarfs, but they also provide a rare empirical glimpse into the nature and origin of how some stars fail.

Robert Mathieu | EurekAlert!
Further information:
http://www.astro.wisc.edu

More articles from Physics and Astronomy:

nachricht Writing and deleting magnets with lasers
19.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ultrafast electron oscillation and dephasing monitored by attosecond light source
19.04.2018 | Yokohama National University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>