Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique provides the first full view of the far side of the sun

15.03.2006


The hidden face of the sun is fully visible for the first time, thanks to a new technique developed at Stanford University.


This image shows two active regions crossing the solar east limb in November 2003. The right side, in yellow, are white light images showing sunspots. The left side (blue) shows the prediction of sunpots on the farside. Since the white light observations are images made "straight on", they are stretched into blurry lines when they are projected to show the view over the limb. This is simply because we do not have a camera above the east limb (yet).



Only half of the sun--the near side--is directly observable. The far side always faces away from Earth and is therefore out of view. But the new technology allows anyone with a computer to download images of the entire solar surface--an important advance with practical applications, say researchers, because potentially damaging solar storms that form on the far side now can be detected days, or even weeks, before they wreak havoc on Earth.

"Sunspots, solar flares and other active regions on the surface of the sun emit radiation that can interfere with orbiting satellites, telecommunications and power transmission," says Philip Scherrer, research professor in the Stanford Department of Physics. "This new method allows more reliable warning of magnetic storms brewing on the far side that could rotate with the sun and threaten the Earth."


It takes about 27 days for the sun to rotate on its axis, so an active region that forms on the far side can remain hidden for up to 13 days, surprising Earth-bound observers when it finally rotates into view. That’s what happened in October 2003, when active regions from the back side suddenly appeared on the eastern edge of the sun, spewing X-rays, ultraviolet radiation and high-energy particles into space. "We were not able to make a public prediction about the intensity of that activity, because at the time we could only image about a quarter to a third of the far side," Scherrer says. "The new method allows us to see the entire far side, including the poles."

SOHO mission

Scherrer and his Stanford colleagues study the sun using data from the Solar and Heliospheric Observatory (SOHO), a research satellite launched in 1995 by NASA and the European Space Agency. On board SOHO is the Michelson Doppler Imager (MDI), an electronic instrument that creates images of the sun’s interior by measuring the velocity of sound waves produced by hot, bubbling gases that well up to the surface--a technique called acoustic helioseismology.

"Heliosesimology works on the same principle as medical ultrasound, which can create an image of a fetus inside a pregnant woman," Scherrer explains. "In this case, we’re looking through a star with sound waves."

Positioned about 1 million miles above Earth, the SOHO satellite always faces the visible front side of the sun. In 2000 and 2001, scientists Charles Lindsey and Doug Braun--now at NorthWest Research Associates Inc.--developed two techniques that resulted in the first pictures of the sun’s back side. However, both techniques had limitations. One method only produced images near the center of the far side, while the other was restricted to views at the edges. To get complete image, researchers would have to combine both methods, but that proved to be a major technical challenge.

The problem was finally overcome last summer when a new computer algorithm was developed by the Stanford SOHO/MDI team in collaboration with Kenneth Oslund, an undergraduate at the California Institute of Technology. Their work resulted in the MDI Farside Graphics Viewer, which displays the first full images of the far side of the sun. The viewer is available online at http://soi.stanford.edu/press/farside_Feb2006/web.

Solar max

"This new method is a vast improvement," Scherrer says. "It should be especially important during the next solar maximum, which should begin in 2011, when solar activity will be at its peak."

He points out that during the last "solar max," which lasted from 2000 to 2003, solar storms temporarily knocked out power in the northern parts of Sweden and Canada and destroyed a satellite that was used to verify credit card payments at numerous gas stations in the United States. Air transportation also can be disrupted when solar radiation interferes with the operation of Global Positioning System satellites, or when aircraft that take short cuts over the North Pole have to take longer routes to prevent passengers and crew from being exposed to intense X-ray radiation.

"Our goal is to give pilots and air traffic controllers a day or two notice of a possible solar event," Scherrer says, adding that missions to Mars and other planets also can be affected when solar storms interfere with satellite communications to Earth. Last week, researchers at the National Center for Atmospheric Research in Colorado released new computer models predicting that the next solar cycle will be 30 to 50 percent stronger than last time.

In 2008, SOHO is scheduled to be replaced by NASA’s Solar Dynamics Observatory (SDO), a more advanced satellite designed to provide new data about the magnetic forces inside the sun that drive the 11-year solar cycle. Stanford, the University of Colorado and the Lockheed Martin Corp. will lead the SDO research effort.

"With cell phones and other devices, we’ve gotten more and more dependent on the space environment, so there are real economic reasons for missions like SOHO and SDO," Scherrer says.

Mark Shwartz | EurekAlert!
Further information:
http://www.solar.stanford.edu
http://sohowww.nascom.nasa.gov
http://solar-center.stanford.edu

More articles from Physics and Astronomy:

nachricht When helium behaves like a black hole
22.03.2017 | University of Vermont

nachricht Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars
22.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>