Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Uneven surfaces conserve fuel


Tiny regular bumps on a surface, such as the wing of an airplane, can substantially reduce total air resistance, and thereby the consumption of fuel. Wind tunnel tests at the Royal Institute of Technology (KTH) in Stockholm, Sweden, show that small cylindrical bumps on a surface delay the transition from laminar flow (well-ordered) to turbulent (chaotic) when air flows over a surface­-a crucial factor in total air resistance.

If this finding, made by an international research team at KTH, holds up in tests outside the laboratory, huge savings may be in store for the aviation industry.

Many other technological applications may see major yet simple cost reductions and save energy as a result of reduced air resistance. The findings are being published in the prestigious journal Physical Review Letters and are making waves around the world.

“The discovery is revolutionary for physicists working with fluid mechanics, since it goes against the conventional thinking that an uneven surface could only speed up the transition to turbulence,” says Jens Fransson, one of the scientists in the research group.

A further benefit the newly discovered method might offer is that it is passive­-it requires no more input than properly placed bumps on the surface to prevent unnecessary turbulence. Many earlier methods for reducing total air resistance have involved the elimination of turbulence that has already occurred.

In wind tunnel experiments at the Department of Mechanics at KTH, the scientists have created velocity variations against the direction of the flow by placing tiny cylindrical elements on a surface. This hampers the occurrence of instabilities and delays the transition of laminar flow to turbulence.

Plasma physics, laser technology, and magnetohydrodynamics are further examples of fields where the underlying physical mechanism should be of interest.

Other participating scientists: Prof. Alessandro Talamelli, Il Facoltà di Ingegneria, Universitetà di Bologna, Italy; Luca Brandt, Ph.D., KTH Mechanics, Stockholm; Assoc. Prof. Carlo Cossu, LadHyX, CNRS École Polytechnique, France.

Magnus Myrén | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>