Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RAVE-ING Success As Generations Of Astronomers Survey The Stars

13.02.2006


A Cambridge PhD student is following in his great-great-grandfather’s footsteps by helping to measure the speeds of up to one million stars passing near the Sun – a huge advance on the efforts of his ancestor who was able to measure the speeds of only 100 stars over a century ago. The first data release is being announced today.



"The speeds of stars reveal where they were born," said George Seabroke, a graduate student at the Institute of Astronomy in Cambridge. "We’re trying to find out whether stars in our own Milky Way galaxy were actually made here or whether some of them existed in other galaxies, before becoming part of our Galaxy. Such a large survey wasn’t possible in my great-great-grandfather’s era."

Current galaxy formation theories predict that some of these other galaxies were cannibalised by the Milky Way a long time ago as it was growing, leaving their very old stars where we see them today. Uncovering these fossil remains will reveal the history of our Galaxy – a practice known as Galactic Archaeology.


In order to undertake a survey of this scope, astronomers are participating in the RAdial Velocity Experiment (RAVE). This ambitious spectroscopic survey is intended to measure, over the next few years, radial velocities and stellar atmosphere parameters (temperature, metallicity, surface gravity) of up to one million stars passing near the Sun.

For the last three years, RAVE has been using the unique capabilities of the ‘six degree field’ (6dF) multi-object spectrograph on the 1.2-m UK Schmidt Telescope of the Anglo-Australian Observatory, sited at Siding Spring Observatory in New South Wales, Australia.

This instrument is capable of obtaining spectroscopic information for as many as 150 stars at once, over a full six degree diameter, equivalent to 12 full Moons lined up in row. This is more than one hundred times larger than typical spectrographs. The combination of area and number of simultaneous spectra allows this unprecedented survey to be feasible.

Today, the leader of RAVE, Professor Matthias Steinmetz of the Astrophysical Institute Potsdam (AIP) in Germany, announced the first data release from the experiment to the astronomical community at the Local Group Cosmology meeting in Aspen, Colorado, USA. The data release includes 25,000 stars from the first year of RAVE (over 80,000 stars have been observed to date).

"RAVE will run for several more years, and the full RAVE survey will provide a vast resource of stellar motions and chemical abundances, allowing us to answer fundamental questions of the formation and evolution of our Galaxy," said Professor Steinmetz.

George Michael Seabroke is part of the international team of astronomers working on RAVE. His great-great-grandfather, George Mitchell Seabroke, was an early pioneer in measuring the speeds of stars at the Temple Observatory, Rugby School, Warwickshire, in the 1880s. His competitor at the time was Carl Hermann Vogel, who was the first to measure a star speed from a photograph in 1888. Vogel was the director of the institute that later on became the AIP in Germany. Now, Professor Matthias Steinmetz, the leader of RAVE, is the AIP director. The current Seabroke generation is now collaborating with the AIP via RAVE.

George Senior could only look at the light spectrum of one star at a time through the telescope eyepiece. RAVE’s telescope looks at an area of sky more than 100 times greater than the full Moon. It has 100 optical fibres, each acting like an eyepiece that can be automatically pointed towards a star. This enables RAVE to simultaneously receive light from lots of stars so that it can survey the Southern Sky at a rate many times faster than the extremely patient Mr. Seabroke Senior!

| alfa
Further information:
http://www.ras.org.uk

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>