Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Georgia Tech develops technology for more compact, inexpensive spectrometers

09.02.2006


A prototype spectrometer made using Georgia Tech’s new technology. This spectrometer can be plugged into a lap top and used for environmental sensing.


New technology allows for more versatile portable spectrometers

Being the delicate optical instruments that they are, spectrometers are pretty picky about light.

But Georgia Tech researchers have developed a technology to help spectrometers — instruments that can be used as the main parts of sensors that can detect substances present in even ultra-small concentrations — analyze substances using fewer parts in a wider variety of environments, regardless of lighting. The technology can improve the portability while reducing the size, complexity, and cost of many sensing and diagnostics systems that use spectrometers. The technology has appeared in Applied Optics, Optics Express and Optics Letters and was presented as an invited talk at the IEEE Lasers and Electro-Optics Society Annual Meeting 2005.



Conventional spectrometers have multiple parts — a narrow slit, a lens (to guide light), a grating (to separate wavelengths), a second lens and a detector (to detect the power at different wavelengths). The Georgia Tech team’s goal was to combine all these pieces into two parts, a volume hologram (formed in an inexpensive piece of polymer) and a detector, to create a compact, efficient and inexpensive spectrometer that could be used for multiple spectroscopy and sensing applications.

“This technology is very useful for low-end spectrometers, but at the same time, there are many applications that require high-end spectrometers. This technology could convert a portion of a complex, high-end system into a much more versatile and light system,” said Ali Adibi, head of the project and an associate professor in the School of Electrical and Computer Engineering.

Because of its light weight and relative insensitivity to optical alignment, the new design helps create more versatile and portable spectrometers for several applications where portability had been difficult. For instance, the technology would make hand held devices possible for carbon monoxide detection or on-the-spot blood analysis and other biomedical applications.

One of the key advantages to the new spectrometer is its insensitivity to alignment. Spectrometers are very sensitive to the direction and wavelength of light and several of their parts are devoted to keeping the light correctly directed.

But the Georgia Tech team was able to incorporate those necessary alignments along with the focusing functions into a volume hologram. This hologram is recorded by the interference pattern of two beams in a piece of photopolymer.

“There were lots of challenges because the light we need to analyze is diffuse in nature,” Adibi said.

Conventional spectrometers work the best under collimated light (i.e. light moving in only one direction). However, the optical signal needed for practical sensing applications is diffuse. This problem is solved in conventional spectrometers by blocking light in all but one direction using a slit and a lens, but this also results in considerable power loss and lower efficiency.

“By choosing the appropriate hologram, we have no collimating hardware in our system. We have further demonstrated the capability of improving the throughput by using more complex holograms, which are recorded similar to less complex holograms, in our spectrometer without adding to the actual complexity of the system,” Adibi added.

The Georgia Tech team has a prototype for a lower-end spectrometer comparable to those currently on the market but for a considerably lower cost, Adibi said. Their research will now focus on developing more complex systems by using specially designed volume holograms to improve the efficiency — and thus the sensitivity — of the spectrometers, Adibi added.

The Georgia Institute of Technology is one of the nation’s premiere research universities. Ranked ninth among U.S. News & World Report’s top public universities, Georgia Tech educates more than 17,000 students every year through its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech maintains a diverse campus and is among the nation’s top producers of women and African-American engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute. During the 2004-2005 academic year, Georgia Tech reached $357 million in new research award funding. The Institute also maintains an international presence with campuses in France and Singapore and partnerships throughout the world.

Megan McRainey | EurekAlert!
Further information:
http://www.icpa.gatech.edu

More articles from Physics and Astronomy:

nachricht Turning entanglement upside down
22.05.2018 | Universität Innsbruck

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Matabele ants: Travelling faster with detours

22.05.2018 | Life Sciences

Flow of cerebrospinal fluid regulates neural stem cell division

22.05.2018 | Life Sciences

Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal

22.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>