Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA’s XMM reduces cost, extends science value

08.02.2006


In December 2005, ESA’s highly successful XMM-Newton was given a four-year extension. The longer life necessitated a first-ever "in-flight" upgrade to the spacecraft’s mission control software.

Last year, ESA’s Science Programme Committee decided to extend operations of ESA’s hugely valuable X-ray observation mission, XMM-Newton, for four years, until 31 March 2010.

The decision was an easy choice given the incredible science results that XMM has provided since launch in 1999, with over 1,000 scientific papers having been published based on XMM data (see related news link at right).



The life extension meant, however, that mission controllers at ESA’s Space Operations Centre (ESOC) would be faced with maintaining and running XMM’s mission control software — developed in the 1990s — into 2010, over a decade later. And if the spacecraft remains healthy, it could additionally be extended well into the next decade.

Fighting rising maintenance costs

XMM’s first mission control system was based on ESA’s older standard, SCOS-1 (Spacecraft Operating System-1).

The SCOS-1-based operations infrastructure would require increased maintenance budgets in the coming years as fewer outside contractor companies were able to, or had interest in, maintaining the software. Furthermore, contract engineers who originally knew how to operate the software have already upgraded their skills and many have moved on to more modern systems.

In the meantime, newer and far more capable software, SCOS-2000, had been developed.

"SCOS-200 is maintainable into the future, is compatible with current and future computer hardware and is more flexible; it’s also the new ESA standard," says Oscar Ojanguren, Deputy Spacecraft Operations Manager for XMM at ESOC.

Other ESA missions had already implemented the new SCOS-2000 mission control software and spacecraft controllers, system analysts and engineers at ESOC were already trained on it.

As a result, as it became obvious that the XMM mission would be extended, it also became obvious that the mission’s ground segment would have to upgrade to SCOS-2000.

XMM: First time lucky

XMM was slated to be the first ESA mission to convert to a new operating system during in-flight operations.

The challenge was that no one had ever replaced the mission control software in mid-mission before, and senior management had required that the upgrade would not interrupt the flow of valuable science data from XMM.

And the Solar System wasn’t helping either.

Due to XMM’s orbital trajectory and the Earth’s rotation around the Sun, the upgrade had to be in place before the start of the eclipse season beginning at end-August 2005.

New software fundamentally different from old

There were other challenges. The new SCOS-2000 software, for example, uses packet-based TCP/IP networking for communication with ground stations, similar to that used on the public Internet to view Web pages and exchange email; the older SCOS-1 does not.
"The SCOS-2000 software is almost totally new. It was a real challenge to upgrade, and meant we also had to upgrade software at the Science Operations Centre at ESAC in Villafranca as well," says Oscar.

The complex upgrade project began in late 2002 at ESOC and early 2003 in Villafranca; development work ran though late 2004. The upgrade team involved flight operations and other engineers at ESOC, ESTEC and Villafranca as well as extensive support from industry teams.

"Our plan was to build the new ground segment based on SCOS-2000 and get it running in parallel to the existing system, then switch it on and compare science and flight control data output. If both systems gave the same results, we could simply turn the old system off," says ESOC’s Dietmar Heger, XMM Newton’s Spacecraft Operations Manager. "It was like building an entirely new ground segment for a new mission," he adds.

Smooth upgrade through strong teamwork

Despite the challenges, the upgrade proceeded as planned and by March 2005, a series of live tests had been completed using the newly implemented SCOS-2000 software to control XMM and receive science data while the older SCOS-1 system was kept in operation. "There was a lot of extra work for engineers at ESOC," says Heger, "but there was great teamwork between ESA establishments and industry support teams". Helpfully, throughout the upgrade project, XMM itself performed flawlessly, helping to ease the work burden.

On 5 April 2005, the new SCOS-2000-based mission control system was declared fully functional and was able to control XMM full time in parallel with the older system. The main problems found by the upgrade team had been in the telecommunication links between the Mission Operations Centre at ESOC and the Science Operations Centre in Spain; SCOS-2000 itself functioned completely as expected.

In June 2005, the older system was turned off for the last time, and the XMM ground segment project ended with a successful upgrade. The ultimate measure however, was not only the technical success of the project, but also the financial success.

Project cost under budget and ontime

ESA had allocated a fixed-price contract amount of 2.0 million Euro. The project was actually concluded for less than 1.5 million Euro and was complete well in advance of the unchangeable, August 2005 eclipse season deadline.

The XMM upgrade to SCOS-2000 illustrates that ESA, supported by its industry partners, can deliver strong maintenance cost benefits under demanding, live-mission conditions.

In 2006-2010, XMM is well-placed to continue gathering stunning new science results while ESA and ESOC benefit from the cost advantages of up-to-date and fully maintainable software and systems.

Speaking at an internal ESOC seminar in September 2005 to review lessons learned, one engineer involved in the project said: "Any upgrade project is always stressful; engineers and system users are used to the ’old’ system and old way of working and so it’s also a people issue; and we were successful in meeting that challenge."

Bernhard Von Weyhe | alfa
Further information:
http://www.esa.int/spacecraftops/ESOC-Article-fullArticle_par-40_1134728785579.html

More articles from Physics and Astronomy:

nachricht Comet or asteroid? Hubble discovers that a unique object is a binary
21.09.2017 | NASA/Goddard Space Flight Center

nachricht First users at European XFEL
21.09.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>