Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hi ho silver! FSU physicist helps discover an atomic oddity

27.01.2006


Working with an international team of scientists, a Florida State University physics professor has taken part in an experiment that resulted in the creation of a silver atom with exotic properties never before observed. The team’s observations represent another step forward in science’s long journey to understand the nuclear reactions that power stars and produce all matter.



Sam Tabor, a professor of experimental nuclear physics at FSU and director of the university’s Superconducting Accelerator Laboratory, recently performed the experiment at the GSI laboratory in Darmstadt, Germany, in collaboration with the international team. In the experiment, a cigar-shaped atom was created using a particle collider. To the scientists’ surprise, this atom demonstrated a novel kind of radioactive decay by spitting out two free protons at the same time.

Radioactive decay normally involves the emission of one of three types of particle: a helium nucleus consisting of two protons and two neutrons, an electron or a photon. Exotic atoms engineered to contain fewer neutrons than in the atom’s natural state were expected to break down by emitting protons one at a time. But the correlated two-proton decay hadn’t been seen before and represents a new form of radioactivity.


The team’s findings were published in the Jan. 19 issue of Nature, the world’s foremost scientific weekly journal.

"The purpose of this line of research is to expand our knowledge of nuclear physics beyond those nuclei present in nature by exploring nuclei with either fewer or more neutrons," Tabor said. "This will help us to understand even the stable nuclei. Another motivation is the fact that such unstable nuclei play important roles in astrophysics and the production of the elements on Earth. We cannot fully understand the astrophysical processes by which even the atoms in our body were produced until we understand the structure of neutron-rich and neutron-poor nuclei."

At the GSI lab, Tabor and his colleagues bombarded a thin film of nickel foil with a beam of calcium atoms, causing some nickel and calcium ions to coalesce to form silver atoms with fewer neutrons than normal. Most of these silver atoms decayed conventionally, but a few ejected two protons at once.

The deficit of neutrons in the silver had deformed the nuclei from spheres into fat cigar shapes. In some cases the proton pairs jumped out from the same end of the cigar, at other times from opposite ends, but they were always perfectly synchronized, Tabor said.

"It’s like there’s a captain on board telling them exactly when to dive," he added.

In addition to Tabor, other members of the team were from Germany, Belgium, Russia, Bulgaria, Poland, Italy and Spain.

The collaborators now are discussing future directions for their research. "However," Tabor said, "we are also performing related research at the Superconducting Accelerator Laboratory right here at FSU. Experiments currently under way here are exploring nuclei with neutron excesses, and we have built a facility to directly study reactions and nuclei of importance to astrophysics," Tabor said.

Not all of Tabor’s work is on such an elevated plane. At FSU he also serves as coordinator of "The Flying Circus of Physics," an open house and science fair hosted every other year by the physics department to showcase some of the department’s cutting-edge research facilities.

"’The Flying Circus of Physics’ is a way to help generate interest in the sciences, particularly among youngsters, by showing folks that physics is fun," Tabor said.

Sam Tabor | EurekAlert!
Further information:
http://www.physics.fsu.edu
http://www.fsu.com

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>