Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hi ho silver! FSU physicist helps discover an atomic oddity

27.01.2006


Working with an international team of scientists, a Florida State University physics professor has taken part in an experiment that resulted in the creation of a silver atom with exotic properties never before observed. The team’s observations represent another step forward in science’s long journey to understand the nuclear reactions that power stars and produce all matter.



Sam Tabor, a professor of experimental nuclear physics at FSU and director of the university’s Superconducting Accelerator Laboratory, recently performed the experiment at the GSI laboratory in Darmstadt, Germany, in collaboration with the international team. In the experiment, a cigar-shaped atom was created using a particle collider. To the scientists’ surprise, this atom demonstrated a novel kind of radioactive decay by spitting out two free protons at the same time.

Radioactive decay normally involves the emission of one of three types of particle: a helium nucleus consisting of two protons and two neutrons, an electron or a photon. Exotic atoms engineered to contain fewer neutrons than in the atom’s natural state were expected to break down by emitting protons one at a time. But the correlated two-proton decay hadn’t been seen before and represents a new form of radioactivity.


The team’s findings were published in the Jan. 19 issue of Nature, the world’s foremost scientific weekly journal.

"The purpose of this line of research is to expand our knowledge of nuclear physics beyond those nuclei present in nature by exploring nuclei with either fewer or more neutrons," Tabor said. "This will help us to understand even the stable nuclei. Another motivation is the fact that such unstable nuclei play important roles in astrophysics and the production of the elements on Earth. We cannot fully understand the astrophysical processes by which even the atoms in our body were produced until we understand the structure of neutron-rich and neutron-poor nuclei."

At the GSI lab, Tabor and his colleagues bombarded a thin film of nickel foil with a beam of calcium atoms, causing some nickel and calcium ions to coalesce to form silver atoms with fewer neutrons than normal. Most of these silver atoms decayed conventionally, but a few ejected two protons at once.

The deficit of neutrons in the silver had deformed the nuclei from spheres into fat cigar shapes. In some cases the proton pairs jumped out from the same end of the cigar, at other times from opposite ends, but they were always perfectly synchronized, Tabor said.

"It’s like there’s a captain on board telling them exactly when to dive," he added.

In addition to Tabor, other members of the team were from Germany, Belgium, Russia, Bulgaria, Poland, Italy and Spain.

The collaborators now are discussing future directions for their research. "However," Tabor said, "we are also performing related research at the Superconducting Accelerator Laboratory right here at FSU. Experiments currently under way here are exploring nuclei with neutron excesses, and we have built a facility to directly study reactions and nuclei of importance to astrophysics," Tabor said.

Not all of Tabor’s work is on such an elevated plane. At FSU he also serves as coordinator of "The Flying Circus of Physics," an open house and science fair hosted every other year by the physics department to showcase some of the department’s cutting-edge research facilities.

"’The Flying Circus of Physics’ is a way to help generate interest in the sciences, particularly among youngsters, by showing folks that physics is fun," Tabor said.

Sam Tabor | EurekAlert!
Further information:
http://www.physics.fsu.edu
http://www.fsu.com

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>