Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physics turns a corner with three-point turn atoms

18.01.2006


You may think making a three-point turn in your car is easy, but how about doing the same with a single-charged atom?



That’s what scientists have achieved for the first time, marking a major breakthrough for physics and a first step towards creating the complicated labyrinth of ’atomic motorways’ needed for a quantum computer.

The microscopic motoring manoeuvre was performed by University of Sussex physicist Dr Winfried Hensinger with colleagues at the University of Michigan, USA. Details of the experiment are published in the January 2006 issue of the journal Applied Physics Letters.


The ability to shuttle ions (charged atoms) in a controlled environment is seen as an important demonstration of how to harness the seemingly magical properties of atoms. This development will help scientists to store and analyse the vast quantities of data used in highly sophisticated calculations - in super-fast quantum computers.

To be able to build this kind of computer, scientists need to trap ions - no mean feat in itself - then control their movements in a sophisticated labyrinth of ’atomic roads’. Such a process has previously been carried out for single ions along one line, but Dr Hensinger (now Lecturer in Atomic Molecular and Optical Physics at Sussex), and the Michigan team have shown how they can make atoms turn a corner.

Keen for more driving pleasure, they even managed to switch two ions around by having them perform a three-point turn. This will hopefully allow eventually for the mass-manipulation of atoms, vital for the operation of a quantum computer.

Ion traps are made from micro-fabricated electrodes, in which ions are controlled by electric fields in an ultra-high vacuum chamber. The new construction, the first two-dimensional ion trap array, is the most sophisticated yet. The ions are steered inside a T-junction that is laser micro-machined in thin layers of a material called alumina.

Dr Hensinger says: "This is big news because it is very difficult to trap atoms, let alone manipulate them in transit. This and other recent developments show that it should be possible to build a quantum computer with trapped ions. Now we can take two atoms and swap them around, which mathematically corresponds to a fundamental requirement for a quantum computer. This is the prerequisite to go from something academically interesting to something useful. This is a quantum leap in the development of the quantum computer."

Quantum technology could be used in the future to understand chemical reactions, create medicines, ultra-fast communications systems and seemingly impossible simulations, such as the creation of our universe.

Maggie Clune | alfa
Further information:
http://www.sussex.ac.uk

More articles from Physics and Astronomy:

nachricht Major discovery in controlling quantum states of single atoms
20.02.2018 | Institute for Basic Science

nachricht Observing and controlling ultrafast processes with attosecond resolution
20.02.2018 | Technische Universität München

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>